统计语言建模的三种新图形模型Three New Graphical Models for Statistical Language Modelling |
|
课程网址: | http://videolectures.net/icml07_mnih_tngm/ |
主讲教师: | Andriy Mnih |
开课单位: | 多伦多大学 |
开课时间: | 2007-06-23 |
课程语种: | 英语 |
中文简介: | 最近,统计语言建模中的n克模型的优势受到参数模型的挑战,这些模型使用分布式表示来抵消由数据稀疏性引起的困难。我们提出了三种新的概率语言模型,它们通过使用这些单词的分布式表示来定义给定几个前面单词的序列中的下一个单词的分布。我们展示了如何在学习用于预测来自先前分布式表示的下一个单词的分布式表示的大量随机二进制隐藏特征的同时学习单词的实值分布式表示。从二进制隐藏功能的先前状态添加连接可以提高性能,就像在实际值分布式表示之间添加直接连接一样。我们的一个型号明显优于最好的ngram型号。 |
课程简介: | The supremacy of n-gram models in statistical language modelling has recently been challenged by parametric models that use distributed representations to counteract the difficulties caused by data sparsity. We propose three new probabilistic language models that define the distribution of the next word in a sequence given several preceding words by using distributed representations of those words. We show how real-valued distributed representations for words can be learned at the same time as learning a large set of stochastic binary hidden features that are used to predict the distributed representation of the next word from previous distributed representations. Adding connections from the previous states of the binary hidden features improves performance as does adding direct connections between the real-valued distributed representations. One of our models significantly outperforms the very best ngram models. |
关 键 词: | 统计语言; n克模型; 参数模型 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-17:lxf |
阅读次数: | 126 |