数据光谱学:使用卷积算子的特征空间学习混合模型Data Spectroscopy: Learning Mixture Models using Eigenspaces of Convolution Operators |
|
课程网址: | http://videolectures.net/icml08_belkin_dslmm/ |
主讲教师: | Mikhail Belkin |
开课单位: | 俄亥俄州立大学 |
开课时间: | 2008-08-01 |
课程语种: | 英语 |
中文简介: | 在本文中,我们开发了一个用于估算混合分布的光谱框架,特别是高斯混合模型。在物理学中,光谱学通常用于通过光谱识别物质。将核函数K(x,y)视为“光”并将采样数据视为“物质”,它们的相互作用的光谱(核矩阵K的特征值和特征向量)揭示了基础参数分布p的某些方面,例如高斯混合的参数。我们的方法扩展了现有光谱技术的直觉和分析,例如光谱聚类和核主成分分析(KPCA)。我们构造算法来估计高斯混合模型的参数,包括混合成分的数量,它们的均值和协方差矩阵,这在许多实际应用中是重要的。我们提供理论框架并显示令人鼓舞的实验结果。 |
课程简介: | In this paper we develop a spectral framework for estimating mixture distributions, specifically Gaussian mixture models. In physics, spectroscopy is often used for the identification of substances through their spectrum. Treating a kernel function K(x,y) as "light" and the sampled data as "substance", the spectrum of their interaction (eigenvalues and eigenvectors of the kernel matrix K) unveils certain aspects of the underlying parametric distribution p, such as the parameters of a Gaussian mixture. Our approach extends the intuitions and analyses underlying the existing spectral techniques, such as spectral clustering and Kernel Principal Components Analysis (KPCA). We construct algorithms to estimate parameters of Gaussian mixture models, including the number of mixture components, their means and covariance matrices, which are important in many practical applications. We provide a theoretical framework and show encouraging experimental results. |
关 键 词: | 估算混合分布; 光谱框架; 高斯混合模型 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-17:lxf |
阅读次数: | 79 |