0


一种高效强化学习的面向对象表示方法

An Object-Oriented Representation for Efficient Reinforcement Learning
课程网址: http://videolectures.net/icml08_diuk_oor/  
主讲教师: Carlos Diuk
开课单位: 新泽西州立大学
开课时间: 2008-08-04
课程语种: 英语
中文简介:
已经研究了强化学习中的丰富表示,以便在大型状态空间中实现泛化和使学习可行。我们介绍了面向对象的MDP(OO MDP),这是一种基于对象及其交互的表示,这是一种自然的环境建模方法,并提供了重要的泛化机会。我们引入了确定性OO MDP的学习算法,并证明了其样本复杂度的多项式约束。我们在众所周知的Taxi域中演示了我们的表示和算法的性能提升,以及现实生活中的视频游戏。
课程简介: Rich representations in reinforcement learning have been studied for the purpose of enabling generalization and making learning feasible in large state spaces. We introduce Object-Oriented MDPs (OO-MDPs), a representation based on objects and their interactions, which is a natural way of modeling environments and offers important generalization opportunities. We introduce a learning algorithm for deterministic OO-MDPs, and prove a polynomial bound in its sample complexity. We illustrate the performance gains of our representation and algorithm in the well-known Taxi domain, plus a real-life videogame.
关 键 词: 强化学习; 面向对象; 学习算法
课程来源: 视频讲座网
最后编审: 2019-04-18:cwx
阅读次数: 100