首页   → 应用数学
首页 → 数学分析
首页 → 应用统计数学
  
    
 首页 → 数学分析
首页 → 应用统计数学
| 典型相关分析的最小二乘公式A Least Squares Formulation for Canonical Correlation Analysis | |
| 课程网址: | http://videolectures.net/icml08_ji_alsf/ | 
| 主讲教师: | Shuiwang Ji | 
| 开课单位: | 华盛顿州立大学 | 
| 开课时间: | 2008-08-29 | 
| 课程语种: | 英语 | 
| 中文简介: | 典型相关分析(CCA)是用于找到两组多维变量之间的相关性的众所周知的技术。它将两组变量投影到一个较低维度的空间中,在这些空间中它们最大程度地相关。 CCA通常用于监督维数减少,其中多维变量之一是从类标签导出的。已经表明,CCA可以被公式化为二元类情况中的最小二乘问题。然而,他们在更一般的环境中的关系仍不清楚。在本文中,我们表明,在温和的条件下,往往容纳高维数据,多标签分类中的CCA可以表示为最小二乘问题。基于这种等价关系,我们提出了几种CCA扩展,包括使用1范数正则化的稀疏CCA。多标签数据集上的实验证实了已建立的等价关系。结果还证明了提议的CCA扩展的有效性 | 
| 课程简介: | Canonical Correlation Analysis (CCA) is a well-known technique for finding the correlations between two sets of multi-dimensional variables. It projects both sets of variables into a lower-dimensional space in which they are maximally correlated. CCA is commonly applied for supervised dimensionality reduction, in which one of the multi-dimensional variables is derived from the class label. It has been shown that CCA can be formulated as a least squares problem in the binary-class case. However, their relationship in the more general setting remains unclear. In this paper, we show that, under a mild condition which tends to hold for high-dimensional data, CCA in multi-label classifications can be formulated as a least squares problem. Based on this equivalence relationship, we propose several CCA extensions including sparse CCA using 1-norm regularization. Experiments on multi-label data sets confirm the established equivalence relationship. Results also demonstrate the effectiveness of the proposed CCA extensions | 
| 关 键 词: | 典型相关分析; 多维变量; 最小二乘 | 
| 课程来源: | 视频讲座网 | 
| 最后编审: | 2019-04-19:lxf | 
| 阅读次数: | 137 | 
 图 书 馆
图 书 馆