0


海报:利用先验领域知识构建基于HMM的语义标记器,对完全未注释的数据进行训练

Poster: Using Prior Domain Knowledge to Build HMM-Based Semantic Tagger Trained on Completely Unannotated Data
课程网址: http://videolectures.net/icml08_mengistu_upd/  
主讲教师: Kinfe Tadesse Mengistu
开课单位: 马格德堡大学
开课时间: 2008-08-11
课程语种: 英语
中文简介:
在本文中,我们提出了一种在完全未注释的数据上训练的强大的统计语义标记模型。该方法主要依赖于先前的领域知识来抵消缺乏语义注释的树库数据。所提出的方法通过将强相关的语义概念组合成具有凝聚力的单元来编码更长的上下文信息。该方法基于隐马尔可夫模型(HMM)并且提供高模糊度解析能力,输出语义上丰富的信息,并且需要相对较低的人力。该方法产生了高性能模型,这些模型在英语和德语的两个应用领域中的两个不同语料库上进行评估。
课程简介: In this paper, we propose a robust statistical semantic tagging model trained on completely unannotated data. The approach relies mainly on prior domain knowledge to counterbalance the lack of semantically annotated treebank data. The proposed method encodes longer contextual information by grouping strongly related semantic concepts together into cohesive units. The method is based on hidden Markov model (HMM) and offers high ambiguity resolution power, outputs semantically rich information, and requires relatively low human effort. The approach yields high-performance models that are evaluated on two different corpora in two application domains in English and German.
关 键 词: 统计语义标记; 树库数据; 隐马尔可夫模型
课程来源: 视频讲座网
最后编审: 2019-04-19:lxf
阅读次数: 69