首页 → 信息处理技术
首页 → 计算机工程
首页 → 计算机应用
首页 → 计算机工程
首页 → 计算机应用
基于范例的无监督学习的解耦方法A Decoupled Approach to Exemplar-based Unsupervised Learning |
|
课程网址: | http://videolectures.net/icml08_nowozin_dae/ |
主讲教师: | Sebastian Nowozin |
开课单位: | 马克斯普朗克研究所 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 基于样本的无监督学习的最近趋势是将学习问题表述为凸优化问题。通过将可能的原型集限制为训练样本来实现凸性。特别是,这已经用于聚类,矢量量化和混合模型密度估计。在本文中,我们提出了一种理论上和实际上优于这些凸形公式的新算法。这可以通过将无监督学习问题作为具有非凸子问题的单个凸“主问题”来实现。我们表明,对于上述学习任务,子问题表现得非常好,可以有效地解决。 |
课程简介: | A recent trend in exemplar based unsupervised learning is to formulate the learning problem as a convex optimization problem. Convexity is achieved by restricting the set of possible prototypes to training exemplars. In particular, this has been done for clustering, vector quantization and mixture model density estimation. In this paper we propose a novel algorithm that is theoretically and practically superior to these convex formulations. This is possible by posing the unsupervised learning problem as a single convex "master problem" with non-convex subproblems. We show that for the above learning tasks the subproblems are extremely well-behaved and can be solved efficiently. |
关 键 词: | 无监督学习; 凸优化; 密度估计 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-19:lxf |
阅读次数: | 83 |