通过半监督嵌入深度学习Deep Learning via Semi-Supervised Embedding |
|
课程网址: | http://videolectures.net/icml08_ratle_dls/ |
主讲教师: | Frederic Ratle |
开课单位: | 洛桑大学 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 我们展示了非常适用于浅半监督学习技术(如内核方法)的非线性嵌入算法如何应用于深层多层体系结构,既可以作为输出层的正则化器,也可以应用于体系结构的每一层。与现有的浅半监督技术相比,这为现有深度学习方法提供了一种简单的替代方案,同时产生了竞争错误率。 |
课程简介: | We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multi-layer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques. |
关 键 词: | 浅半监督学习技术; 非线性嵌入算法; 正则化器 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-19:lxf |
阅读次数: | 126 |