通过聚类按分类特征进行多重分类Multi-Classification by Categorical Features via Clustering |
|
课程网址: | http://videolectures.net/icml08_seldin_mcc/ |
主讲教师: | Yevgeny Seldin |
开课单位: | 哥本哈根大学 |
开课时间: | 2008-08-07 |
课程语种: | 英语 |
中文简介: | 我们推导出基于分类参数乘积空间中的网格聚类的多分类方案的泛化界。网格聚类以每个参数的分区的笛卡尔积的形式对参数空间进行分区。派生边界提供了一种根据内置分类器的泛化能力来评估聚类解决方案的方法。对于基于单个特征的分类,该边界用于找到全局最优分类规则。然后可以将各个特征的泛化能力的比较用于特征排名。我们的实验表明,在这个角色中,界限比互信息或归一化相关指数更精确。 |
课程简介: | We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices. |
关 键 词: | 多分类方案; 网格聚类; 内置分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-21:lxf |
阅读次数: | 82 |