0


贝叶斯网络的判别参数学习

Discriminative Parameter Learning for Bayesian Networks
课程网址: http://videolectures.net/icml08_su_dpl/  
主讲教师: Jiang Su
开课单位: 渥太华大学
开课时间: 2008-07-29
课程语种: 英语
中文简介:
贝叶斯网络分类器已被广泛用于分类问题。给定固定的贝叶斯网络结构,参数学习可以采用两种不同的方法:生成性和判别性学习。虽然生成参数学习更有效,但是判别参数学习更有效。在本文中,我们提出了一种简单,有效,有效的判别参数学习方法,称为判别频率估计(DFE),它通过从数据中区别地计算频率来学习参数。实证研究表明,DFE算法集成了生成学习和判别学习的优点:它在准确性方面与现有技术的判别参数学习方法ELR一样,但效率明显更高。
课程简介: Bayesian network classifiers have been widely used for classification problems. Given a fixed Bayesian network structure, parameter learning can take two different approaches: generative and discriminative learning. While generative parameter learning is more efficient, discriminative parameter learning is more effective. In this paper, we propose a simple, efficient, and effective discriminative parameter learning method, called Discriminative Frequency Estimate (DFE), which learns parameters by discriminatively computing frequencies from data. Empirical studies show that the DFE algorithm integrates the advantages of both generative and discriminative learning: it performs as well as the state-of-the-art discriminative parameter learning method ELR in accuracy, but is significantly more efficient.
关 键 词: 贝叶斯网络分类器; 判别参数学习; 判别频率估计
课程来源: 视频讲座网
最后编审: 2019-04-21:lxf
阅读次数: 112