0


词典偏好模型的民主逼近

Democratic Approximation of Lexicographic Preference Models
课程网址: http://videolectures.net/icml08_walsh_dalpm/  
主讲教师: Thomas J. Walsh
开课单位: 新泽西州立大学
开课时间: 2008-08-29
课程语种: 英语
中文简介:
用于学习词典偏好模型(LPM)的先前算法产生与观察结果一致的“最佳猜测”LPM。我们的方法更民主:我们不承诺单一的LPM。相反,我们使用一致LPM集合的投票来估算目标。我们提出了这种方法的两种变体“变量投票”和“模型投票”,并且凭经验证明这些民主算法优于现有方法。我们还引入了一种直观但强大的学习偏见来修剪一些可能的LPM。我们展示了这种学习偏差如何与变量和模型投票一起使用,并表明学习偏差显着改善了学习曲线,特别是当观察数量很少时。
课程简介: Previous algorithms for learning lexicographic preference models (LPMs) produce a "best guess" LPM that is consistent with the observations. Our approach is more democratic: we do not commit to a single LPM. Instead, we approximate the target using the votes of a collection of consistent LPMs. We present two variations of this method -- "variable voting" and "model voting" -- and empirically show that these democratic algorithms outperform the existing methods. We also introduce an intuitive yet powerful learning bias to prune some of the possible LPMs. We demonstrate how this learning bias can be used with variable and model voting and show that the learning bias improves the learning curve significantly, especially when the number of observations is small.
关 键 词: 词典偏好模型; 民主算法; 学习偏差
课程来源: 视频讲座网
最后编审: 2019-04-21:lxf
阅读次数: 86