0


用于链接预测的学习谱图变换

Learning Spectral Graph Transformations for Link Prediction
课程网址: http://videolectures.net/icml09_kunegis_lsgtlp/  
主讲教师: Jérôme Kunegis
开课单位: 科布伦茨 - 兰道大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
我们提出了一个统一的框架,用于在大型网络中学习链路预测和边缘权重预测功能,基于图形代数频谱的变换。我们的方法概括了几个图形核和降维方法,并提供了一种有效估计其参数的方法。我们展示了如何通过将问题简化为一维回归问题来学习这些预测函数的参数,该问题的运行时间仅取决于方法的降低等级并且可以在视觉上进行检查。我们推导出适用于无向,加权,未加权,单平面和二分图的变体。我们使用社交网络,协作过滤,信任网络,引文网络,作者图和超链接网络中的示例来实验评估我们的方法。
课程简介: We present a unified framework for learning link prediction and edge weight prediction functions in large networks, based on the transformation of a graph’s algebraic spectrum. Our approach generalizes several graph kernels and dimensionality reduction methods and provides a method to estimate their parameters efficiently. We show how the parameters of these prediction functions can be learned by reducing the problem to a one-dimensional regression problem whose runtime only depends on the method’s reduced rank and that can be inspected visually. We derive variants that apply to undirected, weighted, unweighted, unipartite and bipartite graphs. We evaluate our method experimentally using examples from social networks, collaborative filtering, trust networks, citation networks, authorship graphs and hyperlink networks.
关 键 词: 链路预测; 边缘权重预测; 一维回归问题
课程来源: 视频讲座网
最后编审: 2019-04-23:lxf
阅读次数: 82