0


主题链接LDA:主题和作者社区的联合模型

Topic-Link LDA: Joint Models of Topic and Author Community
课程网址: http://videolectures.net/icml09_liu_tllda/  
主讲教师: Yan Liu
开课单位: 南加利福尼亚大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
鉴于大规模链接的文档集合,例如博客文章集或研究文献档案集,有两个基本问题引起了研究界的极大兴趣。一个是确定集合中文档所涵盖的一组高级主题;另一种是揭示和分析文件作者的社交网络。到目前为止,这些问题被视为单独的问题,并且彼此独立地考虑。在本文中,我们认为这两个问题实际上是相互依赖的,应该一起解决。我们开发了一种贝叶斯分层方法,在一个统一的框架中执行主题建模和作者社区发现。我们的模型的有效性在不同领域的两个博客数据集和来自CiteSeer的一篇研究论文引用数据中得到证明。
课程简介: Given a large-scale linked document collection, such as a collection of blog posts or a research literature archive, there are two fundamental problems that have generated a lot of interest in the research community. One is to identify a set of high-level topics covered by the documents in the collection; the other is to uncover and analyze the social network of the authors of the documents. So far these problems have been viewed as separate problems and considered independently from each other. In this paper we argue that these two problems are in fact inter-dependent and should be addressed together. We develop a Bayesian hierarchical approach that performs topic modeling and author community discovery in one unified framework. The effectiveness of our model is demonstrated on two blog data sets in different domains and one research paper citation data from CiteSeer.
关 键 词: 贝叶斯分层方法; 博客数据集; 文档集合
课程来源: 视频讲座网
最后编审: 2019-04-23:lxf
阅读次数: 43