0


线性分类器的PAC贝叶斯学习

PAC-Bayesian Learning of Linear Classifiers
课程网址: http://videolectures.net/icml09_marchand_pbll/  
主讲教师: Mario Marchand
开课单位: 拉瓦尔大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
我们提出了一个通用的PAC贝叶斯定理,从中可以简单地获得所有已知的PAC贝叶斯边界作为特定情况。我们还提出了不同的学习算法来寻找线性分类器,以最小化这些PAC贝叶斯风险边界。这些学习算法通常与AdaBoost和SVM竞争。
课程简介: We present a general PAC-Bayes theorem from which all known PAC-Bayes bounds are simply obtained as particular cases. We also propose different learning algorithms for finding linear classifiers that minimize these PAC-Bayes risk bounds. These learning algorithms are generally competitive with both AdaBoost and the SVM.
关 键 词: 贝叶斯定理; 边界; 线性分类器
课程来源: 视频讲座网
最后编审: 2019-04-24:cwx
阅读次数: 70