0


近似线性规划中的约束松弛

Constraint Relaxation in Approximate Linear Programs
课程网址: http://videolectures.net/icml09_petrik_cral/  
主讲教师: Marek Petrik
开课单位: 马萨诸塞大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
近似线性规划(ALP)是一种具有良好理论属性的强化学习技术,但在实践中往往表现不佳。我们在近似引起虚拟循环的问题中找出了ALP解决方案质量差的一些原因。然后我们介绍两种提高解决方案质量的方法。一种方法在双重信息的指导下推出ALP的选定约束。第二种方法是基于外部惩罚方法放松ALP。后一种方法适用于推出约束不切实际的领域。这两种方法都显示了简单的基准问题以及更现实的血液库存管理问题的有希望的实证结果。
课程简介: Approximate linear programming (ALP) is a reinforcement learning technique with nice theoretical properties, but it often performs poorly in practice. We identify some reasons for the poor quality of ALP solutions in problems where the approximation induces virtual loops. We then introduce two methods for improving solution quality. One method rolls out selected constraints of the ALP, guided by the dual information. The second method is a relaxation of the ALP, based on external penalty methods. The latter method is applicable in domains in which rolling out constraints is impractical. Both approaches show promising empirical results for simple benchmark problems as well as for a more realistic blood inventory management problem.
关 键 词: 近似线性规划; 强化学习; 解决方案
课程来源: 视频讲座网
最后编审: 2020-07-13:yumf
阅读次数: 81