0


信息传染:digg和twitter社交网络新闻传播的实证研究

Information Contagion: an Empirical Study of the Spread of News on Digg and Twitter Social Networks
课程网址: http://videolectures.net/icwsm2010_lerman_ice/  
主讲教师: Kristina Lerman
开课单位: 南加利福尼亚大学
开课时间: 2010-06-29
课程语种: 英语
中文简介:
社交网络已成为信息传播,搜索,营销,专业知识和影响力发现的关键因素,并可能成为动员人们的重要工具。社交媒体使社交网络无处不在,并且研究人员也可以访问大量数据进行实证分析。这些数据集为研究个体和群体行为的动态,网络结构以及信息流的全球模式提供了丰富的证据来源。然而,在大多数先前的研究中,底层网络的结构并不是直接可见的,而是必须从一个人到另一个人的信息流推断出来。因此,我们尚不了解在网络上传播的信息的动态或网络结构如何影响它。我们通过分析两个热门社交新闻网站的数据来解决这一差距。具体来说,我们在Digg和Twitter上提取活跃用户的社交网络,并跟踪对新闻故事的兴趣如何在他们之间传播。我们表明,社交网络在这些网站上的信息传播中起着至关重要的作用,并且网络结构会影响信息流的动态。
课程简介: Social networks have emerged as a critical factor in information dissemination, search, marketing, expertise and influence discovery, and potentially an important tool for mobilizing people. Social media has made social networks ubiquitous, and also given researchers access to massive quantities of data for empirical analysis. These data sets offer a rich source of evidence for studying dynamics of individual and group behavior, the structure of networks and global patterns of the flow of information on them. However, in most previous studies, the structure of the underlying networks was not directly visible but had to be inferred from the flow of information from one individual to another. As a result, we do not yet understand dynamics of information spread on networks or how the structure of the network affects it. We address this gap by analyzing data from two popular social news sites. Specifically, we extract social networks of active users on Digg and Twitter, and track how interest in news stories spreads among them. We show that social networks play a crucial role in the spread of information on these sites, and that network structure affects dynamics of information flow.
关 键 词: 社交网络; 网络结构; 信息流
课程来源: 视频讲座网
最后编审: 2019-04-26:lxf
阅读次数: 58