0


图形模型

Graphical Models
课程网址: http://videolectures.net/ida07_borgelt_gm/  
主讲教师: Christian Borgelt
开课单位: 欧洲软计算中心
开课时间: 2007-10-05
课程语种: 英语
中文简介:
在过去十年中,特别是贝叶斯网络和马尔可夫网络的概率图形模型变得非常流行,作为构建关于感兴趣领域的不确定知识和用于构建基于知识的系统的工具,其允许关于该领域的合理且有效的推断。本讲座简要介绍了图形模型的核心思想,从关系对应物开始,突出了独立性和分解之间的关系。此外,还讨论了模型构建和证据传播的基础知识,重点是连接/连接树的传播。然后,讲座的主要部分用于从数据中学习图形模型,其中研究定量学习(参数估计)以及更复杂的定性或结构学习(模型选择)。
课程简介: In the last decade probabilistic graphical models -- in particular Bayes networks and Markov networks -- became very popular as tools for structuring uncertain knowledge about a domain of interest and for building knowledge-based systems that allow sound and efficient inferences about this domain. The lecture gives a brief introduction into the core ideas underlying graphical models, starting from their relational counterparts and highlighting the relation between independence and decomposition. Furthermore, the basics of model construction and evidence propagation are discussed, with an emphasis on join/junction tree propagation. A substantial part of the lecture is then devoted to learning graphical models from data, in which quantitative learning (parameter estimation) as well as the more complex qualitative or structural learning (model selection) are studied.
关 键 词: 贝叶斯网络; 马尔可夫网络; 参数估计
课程来源: 视频讲座网
最后编审: 2019-04-27:cwx
阅读次数: 65