使用校正滤波器进行分类的多分类器系统增量学习Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification |
|
课程网址: | http://videolectures.net/ida07_campo_avila_ilwmcs/ |
主讲教师: | José del Campo-Ávila |
开课单位: | 马拉加大学 |
开课时间: | 2007-10-08 |
课程语种: | 英语 |
中文简介: | 分类是数据挖掘领域中非常相关的任务。这项任务并非无足轻重,根据问题的性质可能会出现一些困难。已经使用多个分类器系统来构造基本分类器的集合,以便解决或减轻这些问题中的一些。近年来正在研究的最新问题之一是如何在数据集太大或何时可以随时到达新信息时学习。在这种情况下,增量学习是一种可以使用的方法。一些作品使用多个分类器系统以渐进方式学习,结果非常有希望。本文的目的是提出一种方法,用于改善在此上下文中由多个分类器系统达到的分类(或预测)准确度。 |
课程简介: | Classification is a quite relevant task within data mining area. This task is not trivial and some difficulties can arise depending on the nature of the problem. Multiple classifier systems have been used to construct ensembles of base classifiers in order to solve or alleviate some of those problems. One of the most current problems that is being studied in recent years is how to learn when the datasets are too large or when new information can arrive at any time. In that case, incremental learning is an approach that can be used. Some works have used multiple classifier system to learn in an incremental way and the results are very promising. The aim of this paper is to propose a method for improving the classification (or prediction) accuracy reached by multiple classifier systems in this context. |
关 键 词: | 数据挖掘; 分类器系统; 增量学习 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-27:lxf |
阅读次数: | 61 |