0


基于核分类器的变换可靠性估计

Transductive Reliability Estimation for Kernel Based Classifiers
课程网址: http://videolectures.net/ida07_likas_tre/  
主讲教师: Aristidis Likas
开课单位: 约阿尼纳大学
开课时间: 2007-10-08
课程语种: 英语
中文简介:
在医学诊断等多种应用中,估计个体分类的可靠性非常重要。最近,当与若干机器学习分类器(例如朴素贝叶斯和决策树)一起使用时,已证明转换性可靠性估计方法非常有效。然而,没有考虑用于现有技术的基于内核的分类器的转换方法的效率。在这项工作中,我们处理这个问题,并将转换可靠性方法应用于稀疏内核分类器,特别是支持向量机和相关向量机。与直接从分类器的输出获得的可靠性测量相比,医学和生物信息学数据集的实验证明了用于可靠性估计的转导方法的更好性能。此外,我们将该方法应用于冠状动脉疾病的可靠诊断问题,优于专家医师的标准方法。
课程简介: Estimating the reliability of individual classifications is very important in several applications such as medical diagnosis. Recently, the transductive approach to reliability estimation has been proved to be very efficient when used with several machine learning classifiers, such as Naive Bayes and decision trees. However, the efficiency of the transductive approach for state-of-the art kernel-based classifiers was not considered. In this work we deal with this problem and apply the transductive reliability methodology with sparse kernel classifiers, specifically the Support Vector Machine and Relevance Vector Machine. Experiments with medical and bioinformatics datasets demonstrate better performance of the transductive approach for reliability estimation compared to reliability measures obtained directly from the output of the classifiers. Furthermore, we apply the methodology in the problem of reliable diagnostics of the coronary artery disease, outperforming the expert physicians’ standard approach.
关 键 词: 医学诊断; 个体分类; 学习分类器
课程来源: 视频讲座网
最后编审: 2019-04-27:cwx
阅读次数: 36