0


基于判别局部特征的交通标志识别

Traffic Sign Recognition Using Discriminative Local Features
课程网址: http://videolectures.net/ida07_ruta_tsr/  
主讲教师: Andrzej Ruta
开课单位: 布鲁内尔大学
开课时间: 2007-10-08
课程语种: 英语
中文简介:
多年来,实时道路标志识别一直备受关注。这个问题通常在涉及检测和分类的两阶段程序中得到解决。本文提出了一种新的符号表示和分类方法。在许多先前的研究中,重点放在使用全局特征选择技术从大量训练数据导出一组判别特征,例如,主成分分析或AdaBoost。在我们的方法中,我们选择了一种基于颜色距离变换(CDT)的简单而强大的图像表示。基于此表示,我们引入了一种特征选择算法,该算法捕获可变大小的局部图像区域集,确保每个单独符号与所有其他符号之间的最大差异。实验表明,从模板标志图像中提取的辨别局部特征能够实现简单的最小距离分类,误差率不超过7%。
课程简介: Real-time road sign recognition has been of great interest for many years. This problem is often addressed in a two-stage procedure involving detection and classification. In this paper a novel approach to sign representation and classification is proposed. In many previous studies focus was put on deriving a set of discriminative features from a large amount of training data using global feature selection techniques e.g. Principal Component Analysis or AdaBoost. In our method we have chosen a simple yet robust image representation built on top of the Colour Distance Transform (CDT). Based on this representation, we introduce a feature selection algorithm which captures a variable-size set of local image regions ensuring maximum dissimilarity between each individual sign and all other signs. Experiments have shown that the discriminative local features extracted from the template sign images enable simple minimum-distance classification with error rate not exceeding 7%.
关 键 词: 实时道路标志; 图像表示; 图像区域集
课程来源: 视频讲座网
最后编审: 2019-04-27:lxf
阅读次数: 37