0


加权演绎作为人工智能的抽象层次

Weighted Deductionas an Abstraction Level for AI
课程网址: http://videolectures.net/ilpmlgsrl09_eisner_wdal/  
主讲教师: Jason Eisner
开课单位: 约翰霍普金斯大学
开课时间: 2009-09-18
课程语种: 英语
中文简介:
人工智能领域已经成为实施范围。我们有很多想法,但尝试它们越来越费力,因为我们的模型变得更加雄心勃勃,我们的数据集变得更大,更嘈杂,更异构。软件工程负担使得开始新工作变得困难;难以重用和结合现有的想法;并且很难教育我们的学生。在本次演讲中,我将建议隐藏我们正在开发的新抽象级别背后的许多常见实现细节。 Dyna是一种将逻辑编程与函数编程相结合的声明性编程语言。它还支持模块化。它可以被视为一种演绎数据库,定理证明器,真值维持系统或方程求解器。我将说明Dyna如何轻松指定自然语言处理,机器学习以及AI中其他地方所需的典型计算的组合结构。然后,我将草拟实现策略和程序转换,这些转换可以帮助使这些计算快速且内存有效。最后,我建议应该使用机器学习来搜索特定工作负载上的程序的正确策略。
课程简介: The field of AI has become implementation-bound. We have plenty of ideas, but it is increasingly laborious to try them out, as our models become more ambitious and our datasets become larger, noisier, and more heterogeneous. The software engineering burden makes it hard to start new work; hard to reuse and combine existing ideas; and hard to educate our students. In this talk, I'll propose to hide many common implementation details behind a new level of abstraction that we are developing. Dyna is a declarative programming language that combines logic programming with functional programming. It also supports modularity. It may be regarded as a kind of deductive database, theorem prover, truth maintenance system, or equation solver. I will illustrate how Dyna makes it easy to specify the combinatorial structure of typical computations needed in natural language processing, machine learning, and elsewhere in AI. Then I will sketch implementation strategies and program transformations that can help to make these computations fast and memory-efficient. Finally, I will suggest that machine learning should be used to search for the right strategies for a program on a particular workload.
关 键 词: 人工智能; 数据集; 软件工程
课程来源: 视频讲座网
最后编审: 2019-04-29:lxf
阅读次数: 36