0


针对无处不在的数据流挖掘

Data Stream Mining for Ubiquitous Environments
课程网址: http://videolectures.net/is2012_gama_ubiquitous_environments/  
主讲教师: Joao Gama
开课单位: 波尔图大学
开课时间: 2012-11-16
课程语种: 英语
中文简介:
在数据流中,使用受限的计算资源和存储能力对计算模型示例进行一次处理。数据流挖掘的目标包括在这些约束条件下,从未知动态环境生成的观测序列中学习决策模型。大多数流挖掘工作都集中在集中式方法上。移动和嵌入式设备的显着增长以及不断增长的计算和通信容量为在无处不在的环境中进行实时,分布式智能数据分析提供了令人兴奋的新机会。在诸如传感器网络,智能电网,社交汽车,环境智能等领域中,由于通信限制,功耗和隐私问题,集中式方法具有局限性。为解决上述问题,非常需要分布式在线算法。本演示文稿的重点是分布式流聚类算法,这些算法具有高度可扩展性,计算效率和资源感知能力。这些功能使数据流挖掘算法能够在高度动态的移动和无处不在的环境中持续运行。
课程简介: In the data stream computational model examples are processed once, using restricted computational resources and storage capabilities. The goal of data stream mining consists of learning a decision model, under these constraints, from sequences of observations generated from environments with unknown dynamics. Most of the stream mining works focus on centralized approaches. The phenomenal growth of mobile and embedded devices coupled with their ever-increasing computational and communications capacity presents exciting new opportunities for real-time, distributed intelligent data analysis in ubiquitous environments. In domains like sensor networks, smart grids, social cars, ambient intelligence, etc. centralized approaches have limitations due to communication constraints, power consumption, and privacy concerns. Distributed online algorithms are highly needed to address the above concerns. The focus of this presentation is on distributed stream clustering algorithms that are highly scalable, computationally efficient and resource-aware. These features enable the continued operation of data stream mining algorithms in highly dynamic mobile and ubiquitous environments.
关 键 词: 计算资源; 数据流挖掘; 聚类算法
课程来源: 视频讲座网
最后编审: 2019-04-29:lxf
阅读次数: 47