一种基于语义的资源受限设备机器感知的有效位向量方法An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices |
|
课程网址: | http://videolectures.net/iswc2012_henson_constrained_devices/ |
主讲教师: | Cory Henson |
开课单位: | 莱特州立大学 |
开课时间: | 2012-12-03 |
课程语种: | 英语 |
中文简介: | 机器感知的主要挑战是定义有效的计算方法,以从低水平传感器观测数据中获得高水平的知识。新兴解决方案正在使用本体来表达感知和感知领域中的概念,从而实现异构传感器数据的高级集成和解释。然而,OWL的计算复杂性严重限制了其在资源受限环境(例如移动设备)中的适用性和使用。为了克服这个问题,我们使用OWL正式定义机器感知所需的推理任务 - 解释和区分 - 然后使用位向量编码和操作为这些任务提供有效的算法。我们的机器感知方法的适用性在智能手机移动设备上进行评估,表明效率和规模都有显着提高。 |
课程简介: | The primary challenge of machine perception is to define efficient computational methods to derive high-level knowledge from low-level sensor observation data. Emerging solutions are using ontologies for expressive representation of concepts in the domain of sensing and perception, which enable advanced integration and interpretation of heterogeneous sensor data. The computational complexity of OWL, however, seriously limits its applicability and use within resource-constrained environments, such as mobile devices. To overcome this issue, we employ OWL to formally define the inference tasks needed for machine perception – explanation and discrimination – and then provide efficient algorithms for these tasks, using bit-vector encodings and operations. The applicability of our approach to machine perception is evaluated on a smart-phone mobile device, demonstrating dramatic improvements in both efficiency and scale. |
关 键 词: | 机器感知; 低水平传感器; 观测数据 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-08:cwx |
阅读次数: | 82 |