0


从树到森林和规则集-集成方法的统一概述

From Trees to Forests and Rule Sets - A Unified Overview of Ensemble Methods
课程网址: http://videolectures.net/kdd07_elder_seni_fttf/  
主讲教师: John Elder, Giovanni Seni
开课单位: 圣克拉拉大学
开课时间: 2007-08-14
课程语种: 英语
中文简介:
在过去十年中,集合方法是机器学习中最有影响力的发展之一。它们在各种问题域中表现极佳,具有理想的统计特性,并且在计算上具有良好的扩展性。通过将竞争模型组合成一个委员会,他们可以加强“弱”学习程序。 ;本教程解释了使用整体方法的两个最新发展:: **重要性采样**揭示了“经典”集合方法(套袋,随机森林和增强)是单个算法的特殊情况。这个统一的视图阐明了这些方法的属性,并提出了提高其准确性和速度的方法。:规则集合**是从决策树集合派生的线性规则模型。在保持(并且经常提高)树集合的准确性的同时,基于规则的模型更易于解释。本教程面向新手和高级数据挖掘研究人员和从业人员,尤其是工程,统计学和计算机科学。几乎不接触集合方法的用户将清楚地了解每种方法。已经使用合奏的高级从业者将深入了解这种创造下一代模型的突破性方法。**约翰·埃尔德的讲座**:在果壳中,实例和时间表:预测性学习:决策树; ** Giovanni Seni的讲座**: :模型选择(偏差方差权衡,通过收缩进行正则化):集合学习和重要性抽样(ISLE):通用集合生成:套袋,随机森林,AdaBoost,MART:规则集合:解释
课程简介: Ensemble methods are one of the most influential developments in Machine Learning over the past decade. They perform extremely well in a variety of problem domains, have desirable statistical properties, and scale well computationally. By combining competing models into a committee, they can strengthen “weak” learning procedures. ;This tutorial explains two recent developments with ensemble methods: :**Importance Sampling** reveals “classic” ensemble methods (bagging, random forests, and boosting) to be special cases of a single algorithm. This unified view clarifies the properties of these methods and suggests ways to improve their accuracy and speed. :**Rule Ensembles** are linear rule models derived from decision tree ensembles. While maintaining (and often improving) the accuracy of the tree ensemble, the rule-based model is much more interpretable. This tutorial is aimed at both novice and advanced data mining researchers and practitioners especially in Engineering, Statistics, and Computer Science. Users with little exposure to ensemble methods will gain a clear overview of each method. Advanced practitioners already employing ensembles will gain insight into this breakthrough way to create next-generation models. ;**John Elder's lecture**: : In a Nutshell, Examples & Timeline : Predictive Learning : Decision Trees ;**Giovanni Seni's lecture**: : Model Selection (Bias-Variance Tradeoff , Regularization via shrinkage) : Ensemble Learning & Importance Sampling (ISLE) : Generic Ensemble Generation : Bagging, Random Forest, AdaBoost, MART : Rule Ensembles : Interpretation
关 键 词: 集合方法; 机器学习; 线性规则模型
课程来源: 视频讲座网
最后编审: 2019-05-08:lxf
阅读次数: 73