0


网络中经济有效的暴发检测

Cost-effective Outbreak Detection in Networks
课程网址: http://videolectures.net/kdd07_leskovec_ceod/  
主讲教师: Jure Leskovec
开课单位: 斯坦福大学
开课时间: 2007-09-14
课程语种: 英语
中文简介:
鉴于配水网络,我们应该在哪里放置传感器以快速检测污染物?或者,我们应该阅读哪些博客以避免错过重要的故事?这些看似不同的问题具有共同的结构:爆发检测可以建模为选择网络中的节点(传感器位置,博客),以便尽快检测病毒或信息的传播。我们提出了在这些和相关问题中近似最佳传感器放置的一般方法。我们证明了许多现实的爆发检测目标(例如,检测可能性,受影响的人群)表现出“子模块性”的特性。我们利用子模块开发一种有效的算法,可以扩展到大问题,实现接近最佳的位置,同时比简单的贪婪算法快700倍。我们还推导出任何算法获得的展示位置质量的在线界限。我们的算法和界限还处理节点(传感器位置,博客)具有不同成本的情况。我们评估了我们针对几个大型现实问题的方法,包括EPA的配水网络模型和真实的博客数据。获得的传感器放置可证明接近最佳,提供最佳解决方案的恒定部分。我们表明,该方法可以扩展,实现加速并节省数个数量级的存储。我们还展示了该方法如何在两个应用程序中获得更深入的见解,回答多标准权衡,成本敏感性和泛化问题。
课程简介: Given a water distribution network, where should we place sensors to quickly detect contaminants? Or, which blogs should we read to avoid missing important stories? These seemingly different problems share common structure: Outbreak detection can be modeled as selecting nodes (sensor locations, blogs) in a network, in order to detect the spreading of a virus or information as quickly as possible. We present a general methodology for near optimal sensor placement in these and related problems. We demonstrate that many realistic outbreak detection objectives (e.g., detection likelihood, population affected) exhibit the property of “submodularity”. We exploit submodularity to develop an efficient algorithm that scales to large problems, achieving near optimal placements, while being 700 times faster than a simple greedy algorithm. We also derive online bounds on the quality of the placements obtained by any algorithm. Our algorithms and bounds also handle cases where nodes (sensor locations, blogs) have different costs. We evaluate our approach on several large real-world problems, including a model of a water distribution network from the EPA, and real blog data. The obtained sensor placements are provably near optimal, providing a constant fraction of the optimal solution. We show that the approach scales, achieving speedups and savings in storage of several orders of magnitude. We also show how the approach leads to deeper insights in both applications, answering multicriteria trade-off, cost-sensitivity and generalization questions.
关 键 词: 配水网络; 传感器; 污染物
课程来源: 视频讲座网
最后编审: 2020-05-22:杨雨(课程编辑志愿者)
阅读次数: 93