股票选机学习Machine Learning for Stock Selectionp |
|
课程网址: | http://videolectures.net/kdd07_ling_mlfss/ |
主讲教师: | Charles X. Ling |
开课单位: | 西安大略大学 |
开课时间: | 2007-08-14 |
课程语种: | 英语 |
中文简介: | 在本文中,我们提出了一种名为Prototype Ranking(PR)的新方法,该方法是为选股问题而设计的。 PR考虑到现实世界库存数据的巨大规模,并应用改进的竞争学习技术来预测库存等级。 PR的主要目标是选择许多普通股中表现最好的股票。 PR旨在在嘈杂的股票样本集中进行学习和测试,其中表现最好的股票通常是少数股票。 PR的性能通过实际库存数据的交易模拟来评估。 每周选择具有最高预测等级的股票来构建投资组合。 在1978 - 2004年期间,PR的投资组合获得了比Cooper方法更高的平均收益率和更高的风险调整回报率,这表明PR方法可以带来明显的利润改善。 |
课程简介: | In this paper, we propose a new method called Prototype Ranking (PR) designed for the stock selection problem. PR takes into account the huge size of real-world stock data and applies a modified competitive learning technique to predict the ranks of stocks. The primary target of PR is to select the top performing stocks among many ordinary stocks. PR is designed to perform the learning and testing in a noisy stocks sample set where the top performing stocks are usually the minority. The performance of PR is evaluated by a trading simulation of the real stock data. Each week the stocks with the highest predicted ranks are chosen to construct a portfolio. In the period of 1978-2004, PR’s portfolio earns a much higher average return as well as a higher risk-adjusted return than Cooper’s method, which shows that the PR method leads to a clear profit improvement. |
关 键 词: | 选股问题; 库存等级; 实际库存数据; 风险调整回报率 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-09:cjy |
阅读次数: | 35 |