通用多维标度Universal Multi-Dimensional Scaling |
|
课程网址: | http://videolectures.net/kdd2010_agarwal_umd/ |
主讲教师: | Arvind Agarwal |
开课单位: | 犹他大学 |
开课时间: | 2010-10-01 |
课程语种: | 英语 |
中文简介: | 在本文中,我们提出了一个统一的算法框架,用于解决许多已知的MDS变体。我们的算法是一个简单的迭代方案,保证收敛,是模块化的;通过改变算法中单个子程序的内部结构,我们可以轻松切换成本函数和目标空间。除了正式的收敛保证,我们的算法是准确的;在大多数情况下,它们在相当的时间内汇聚到比现有方法更好的质量解决方案。此外,它们具有较小的内存占用和有效的大规模数据集。我们希望这个框架对许多尚未研究的MDS变体有用。我们的框架扩展到将位于球体上的高维点嵌入到较低维度的球体上,保留了测地距离。作为对此结果的补充,我们还将Johnson Lindenstrauss Lemma扩展到这个球形设置,通过显示投影到随机O((1 / eps2)log n)维度球体仅导致测地距离中的eps失真。 |
课程简介: | In this paper, we propose a unified algorithmic framework for solving many known variants of MDS. Our algorithm is a simple iterative scheme with guaranteed convergence, and is modular; by changing the internals of a single subroutine in the algorithm, we can switch cost functions and target spaces easily. In addition to the formal guarantees of convergence, our algorithms are accurate; in most cases, they converge to better quality solutions than existing methods in comparable time. Moreover, they have a small memory footprint and scale effectively for large data sets. We expect that this framework will be useful for a number of MDS variants that have not yet been studied. Our framework extends to embedding high-dimensional points lying on a sphere to points on a lower dimensional sphere, preserving geodesic distances. As a complement to this result, we also extend the Johnson-Lindenstrauss Lemma to this spherical setting, by showing that projecting to a random O((1/eps2) log n)-dimensional sphere causes only an eps-distortion in the geodesic distances. |
关 键 词: | 算法框架; 迭代方案; 模块化 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-10:cwx |
阅读次数: | 56 |