大规模社交网络中流行病毒营销的可扩展影响最大化Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks |
|
课程网址: | http://videolectures.net/kdd2010_chen_sim/ |
主讲教师: | Wei Chen |
开课单位: | 微软公司 |
开课时间: | 2010-10-01 |
课程语种: | 英语 |
中文简介: | 由Kempe,Kleinberg和Tardos(2003)定义的影响最大化是在社交网络中找到一小组种子节点的问题,其在某些影响级联模型下最大化影响的传播。影响力最大化的可扩展性是在大规模在线社交网络中实现流行病毒式营销的关键因素。先前的解决方案,例如Kempe等人的贪婪算法。 (2003)并且其改进缓慢且不可扩展,而其他启发式算法不能在影响范围上提供始终如一的良好性能。在本文中,我们设计了一种新的启发式算法,该算法可以轻松扩展到我们实验中的数百万个节点和边缘。我们的算法有一个简单的可调参数,供用户控制运行时间和算法影响范围之间的平衡。我们对几个真实世界和合成网络进行广泛模拟的结果表明,我们的算法目前是影响最大化问题的最佳可扩展解决方案:(a)我们的算法可以扩展超过百万大小的图,其中贪婪算法变得不可行,以及(b)in在所有尺寸范围内,我们的算法在影响范围内始终表现良好,它始终是最佳算法之一,并且在大多数情况下,它明显优于所有其他可扩展启发式,影响范围增加100%至260%。 |
课程简介: | Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this paper, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread --- it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100%--260% increase in influence spread. |
关 键 词: | 社交网络; 级联模型; 贪婪算法 |
课程来源: | 视频讲座网 |
最后编审: | 2020-04-30:chenxin |
阅读次数: | 77 |