0


压缩Fisher线性判别分析:随机投影数据的分类

Compressed Fisher Linear Discriminant Analysis: Classification of Randomly Projected Data
课程网址: http://videolectures.net/kdd2010_durrant_cfl/  
主讲教师: Robert J. Durrant
开课单位: 伯明翰大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
我们将随机投影与分类结合起来考虑,特别是在随机投影数据空间中对Fisher线性判别(FLD)分类器的分析。与此前设置中其他分类器的先前分析不同,我们避免了当人们坚持在投影下近似保留所有成对距离时产生的不自然效果。我们对数据没有任何稀疏性或潜在的低维结构约束;我们反而利用问题中固有的类结构。随着投影的随机选择,我们在估计的错误分类误差上获得了相当紧的上限,与早期距离保持方法相比,随着训练样本的数量增加,以自然的方式收紧。由此得出,为了FLD的良好推广,所需的投影维数随着类的数量而呈对数增长。我们还表明,协方差指定的误差贡献在低维空间中始终不比在初始高维空间中差。我们将我们的发现与之前的相关工作进行对比,并讨论我们的见解。
课程简介: We consider random projections in conjunction with classification, specifically the analysis of Fisher's Linear Discriminant (FLD) classifier in randomly projected data spaces. Unlike previous analyses of other classifiers in this setting, we avoid the unnatural effects that arise when one insists that all pairwise distances are approximately preserved under projection. We impose no sparsity or underlying low-dimensional structure constraints on the data; we instead take advantage of the class structure inherent in the problem. We obtain a reasonably tight upper bound on the estimated misclassification error on average over the random choice of the projection, which, in contrast to early distance preserving approaches, tightens in a natural way as the number of training examples increases. It follows that, for good generalisation of FLD, the required projection dimension grows logarithmically with the number of classes. We also show that the error contribution of a covariance misspecification is always no worse in the low-dimensional space than in the initial high-dimensional space. We contrast our findings to previous related work, and discuss our insights.
关 键 词: 随机投影; 协方差; 投影维数
课程来源: 视频讲座网
最后编审: 2019-05-11:lxf
阅读次数: 52