热带气旋事件序列相似性的维数约简和度量学习研究Tropical Cyclone Event Sequence Similarity Search via Dimensionality Reduction and Metric Learning |
|
课程网址: | http://videolectures.net/kdd2010_ho_tces/ |
主讲教师: | Shen-Shyang Ho |
开课单位: | 马里兰大学 |
开课时间: | 2010-10-01 |
课程语种: | 英语 |
中文简介: | 地球观测系统数据和信息系统(EOSDIS)是一个综合的数据和信息系统,可以从EOS航天器中存档,管理和分发地球科学数据。 EOSDIS中一个不存在的能力是基于天气事件(如热带气旋)相似性查询输出检索卫星传感器数据。在本文中,我们提出了一个解决相似性搜索问题的框架,给出用户定义的热带实例级限制旋风事件,由任意长度的多维空间时间数据序列表示。这种问题的关键组成部分是用于比较数据序列的相似性/度量函数。我们描述了一种由非线性降维和距离度量学习驱动的新型最长公共子序列(LCSS)参数学习方法。直观地,将任意长度的多维数据序列投影到用于LCSS参数学习的固定维度流形中。通过基于使用基于LCSS的相似性度量计算的排序顺序的(相似的)实例级约束之间的一致性来实现相似性搜索。使用合成和真实热带气旋事件数据序列的组合的实验结果被呈现以证明我们的参数学习的可行性。方法及其对实例约束中的可变性的鲁棒性。然后,我们使用2000年至2008年的真实热带气旋事件数据序列的相似性查询示例来讨论(i)科学兴趣的问题,以及(ii)与天气事件相似性搜索问题相关的挑战和问题。 |
课程简介: | The Earth Observing System Data and Information System (EOSDIS) is a comprehensive data and information system which archives, manages, and distributes Earth science data from the EOS spacecrafts. One non-existent capability in the EOSDIS is the retrieval of satellite sensor data based on weather events (such as tropical cyclones) similarity query output. In this paper, we propose a framework to solve the similarity search problem given user-defined instance-level constraints for tropical cyclone events, represented by arbitrary length multidimensional spatio-temporal data sequences. A critical component for such a problem is the similarity/metric function to compare the data sequences. We describe a novel Longest Common Subsequence (LCSS) parameter learning approach driven by nonlinear dimensionality reduction and distance metric learning. Intuitively, arbitrary length multidimensional data sequences are projected into a fixed dimensional manifold for LCSS parameter learning. Similarity search is achieved through consensus among the (similar) instance-level constraints based on ranking orders computed using the LCSS-based similarity measure. Experimental results using a combination of synthetic and real tropical cyclone event data sequences are presented to demonstrate the feasibility of our parameter learning approach and its robustness to variability in the instance constraints. We, then, use a similarity query example on real tropical cyclone event data sequences from 2000 to 2008 to discuss (i) a problem of scientific interest, and (ii) challenges and issues related to the weather event similarity search problem. |
关 键 词: | 地球科学数据; 非线性降维; 多维数据 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-11:lxf |
阅读次数: | 77 |