0


一种综合机器学习的中风预测方法

An Integrated Machine Learning Approach to Stroke Prediction
课程网址: http://videolectures.net/kdd2010_lee_imla/  
主讲教师: Honglak Lee
开课单位: 密歇根大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
中风是导致死亡的第三大原因,也是美国严重长期残疾的主要原因。准确预测中风对于早期干预和治疗非常有价值。在这项研究中,我们将心脏比例风险模型与心血管健康研究(CHS)数据集中的脑卒中预测机器学习方法进行比较。具体来说,我们考虑医学数据集中数据插补,特征选择和预测的常见问题。我们提出了一种新颖的自动特征选择算法,该算法基于我们提出的启发式选择鲁棒特征:保守均值。与支持向量机(SVM)相结合,与Cox比例风险模型和L1正则化Cox模型相比,我们提出的特征选择算法在ROC曲线(AUC)下实现了更大的面积。此外,我们提出了一种基于边缘的删失回归算法,该算法将基于边缘的分类器的概念与删失回归相结合,以获得与Cox模型更好的一致性指数。总的来说,我们的方法在AUC指标和一致指数方面都优于当前的技术水平。此外,我们的工作还确定了传统方法尚未发现的潜在风险因素。我们的方法可以应用于其他疾病的临床预测,其中缺失数据是常见的并且风险因素未被充分理解。
课程简介: Stroke is the third leading cause of death and the principal cause of serious long-term disability in the United States. Accurate prediction of stroke is highly valuable for early intervention and treatment. In this study, we compare the Cox proportional hazards model with a machine learning approach for stroke prediction on the Cardiovascular Health Study (CHS) dataset. Specifically, we consider the common problems of data imputation, feature selection, and prediction in medical datasets. We propose a novel automatic feature selection algorithm that selects robust features based on our proposed heuristic: conservative mean. Combined with Support Vector Machines (SVMs), our proposed feature selection algorithm achieves a greater area under the ROC curve (AUC) as compared to the Cox proportional hazards model and L1 regularized Cox model. Furthermore, we present a margin-based censored regression algorithm that combines the concept of margin-based classifiers with censored regression to achieve a better concordance index than the Cox model. Overall, our approach outperforms the current state-of-the-art in both metrics of AUC and concordance index. In addition, our work has also identified potential risk factors that have not been discovered by traditional approaches. Our method can be applied to clinical prediction of other diseases, where missing data are common and risk factors are not well understood.
关 键 词: 中风; 心血管健康研究; 心脏比例风险模型
课程来源: 视频讲座网
最后编审: 2019-05-11:lxf
阅读次数: 111