0


基于类型依赖树的核的语义关系抽取

Semantic Relation Extraction With Kernels Over Typed Dependency Trees
课程网址: http://videolectures.net/kdd2010_reichartz_sre/  
主讲教师: Frank Reichartz
开课单位: 弗劳恩霍夫协会
开课时间: 2010-10-01
课程语种: 英语
中文简介:
理解文本的语义内容的重要步骤是提取自然语言文档中的实体之间的语义关系。自动提取技术必须能够识别相同关系的不同版本,这些版本通常可以以多种方式表达。因此,这些技术受益于考虑许多语法和语义特征,尤其是由自动句子解析器生成的解析树。类型化依赖关系解析树是边缘和节点标记的解析树,其标签和拓扑包含有价值的语义线索。通过在结构化数据上使用内核进行分类,可以利用该信息进行关系提取。在本文中,我们提出了用于类型依赖解析树的关系提取的新树核。在公共基准数据集上,我们能够证明我们的新内核的关系提取质量相对于其他最先进的内核的显着改进。
课程简介: An important step for understanding the semantic content of text is the extraction of semantic relations between entities in natural language documents. Automatic extraction techniques have to be able to identify different versions of the same relation which usually may be expressed in a great variety of ways. Therefore these techniques benefit from taking into account many syntactic and semantic features, especially parse trees generated by automatic sentence parsers. Typed dependency parse trees are edge and node labeled parse trees whose labels and topology contains valuable semantic clues. This information can be exploited for relation extraction by the use of kernels over structured data for classification. In this paper we present new tree kernels for relation extraction over typed dependency parse trees. On a public benchmark data set we are able to demonstrate a significant improvement in terms of relation extraction quality of our new kernels over other state-of-the-art kernels.
关 键 词: 语义内容; 自动提取技术; 类型化依赖关系解析树; 公共基准数据集
课程来源: 视频讲座网
最后编审: 2021-05-15:yumf
阅读次数: 42