0


非随机缺失数据推荐系统的培训和测试

Training and Testing of Recommender Systems on Data Missing Not at Random
课程网址: http://videolectures.net/kdd2010_steck_ttrs/  
主讲教师: Harald Steck
开课单位: 贝尔实验室
开课时间: 2010-10-01
课程语种: 英语
中文简介:
用户通常只评估所有可用项目的一小部分。我们表明,缺乏评级可以提供有用的信息,以提高所有项目的最高k命中率,这是建议的自然准确度量。至于测试推荐系统,我们提出了两种性能指标,可以在温和的假设下进行估算,即使评级不是随机丢失(MNAR)也不会产生数据偏差。为了获得最佳测试结果,我们提出了适当的替代目标函数,以便对MNAR数据进行有效的培训。他们的主要财产是考虑数据中观察到或缺失的所有评级。关于测试数据的最高k命中率,我们的实验表明,即使是仅在观察到的评级上优化的复杂方法也有显着的改进。
课程简介: Users typically rate only a small fraction of all available items. We show that the absence of ratings carries useful information for improving the top-k hit rate concerning all items, a natural accuracy measure for recommendations. As to test recommender systems, we present two performance measures that can be estimated, under mild assumptions, without bias from data even when ratings are missing not at random (MNAR). As to achieve optimal test results, we present appropriate surrogate objective functions for efficient training on MNAR data. Their main property is to account for all ratings--whether observed or missing in the data. Concerning the top-k hit rate on test data, our experiments indicate dramatic improvements over even sophisticated methods that are optimized on observed ratings only.
关 键 词: 可用项目; 评级; 命中率
课程来源: 视频讲座网
最后编审: 2020-07-17:yumf
阅读次数: 73