0


利用标签依赖性进行多标签学习

Multi-Label Learning by Exploiting Label Dependency
课程网址: http://videolectures.net/kdd2010_zhang_mlle/  
主讲教师: Min-Ling Zhang
开课单位: 东南大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
在多标签学习中,每个训练示例与一组标签相关联,并且任务是为未见示例预测正确的标签集。由于可能的标签集的数量巨大(指数),从多标签示例中学习的任务相当具有挑战性。因此,成功进行多标签学习的关键是如何有效地利用不同标签之间的相关性来促进学习过程。在本文中,我们建议使用贝叶斯网络结构来有效地编码标签和特征集的条件依赖性,将特征集设置为所有标签的共同父节点。为了使其实用,我们给出了一个近似但有效的程序来找到这样的网络结构。在该网络的帮助下,多标签学习被分解为一系列单标签分类问题,其中通过合并其父母标签作为附加特征为每个标签构建分类器。根据网络给出的标签排序递归地预测标记集的未见示例。对广泛的数据集进行广泛的实验验证了我们的方法对其他成熟方法的有效性。
课程简介: In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for the unseen example. Due to the tremendous (exponential) number of possible label sets, the task of learning from multi-label examples is rather challenging. Therefore, the key to successful multi-label learning is how to effectively exploit correlations between different labels to facilitate the learning process. In this paper, we propose to use a Bayesian network structure to efficiently encode the conditional dependencies of the labels as well as the feature set, with the feature set as the common parent of all labels. To make it practical, we give an approximate yet efficient procedure to find such a network structure. With the help of this network, multi-label learning is decomposed into a series of single-label classification problems, where a classifier is constructed for each label by incorporating its parental labels as additional features. Label sets of unseen examples are predicted recursively according to the label ordering given by the network. Extensive experiments on a broad range of data sets validate the effectiveness of our approach against other well-established methods.
关 键 词: 多标签学习; 贝叶斯网络; 特征集
课程来源: 视频讲座网
最后编审: 2019-05-11:cwx
阅读次数: 75