首页   → 计算机应用
首页 → 计算机工程
首页 → 计算机软件
  
    
 首页 → 计算机工程
首页 → 计算机软件
结构化网络预测的距离度量学习Learning a Distance Metric for Structured Network Prediction | 
  |
| 课程网址: | http://videolectures.net/lce06_andrews_ladm/ | 
| 主讲教师: | Stuart Andrews | 
| 开课单位: | 哥伦比亚大学 | 
| 开课时间: | 2007-04-16 | 
| 课程语种: | 英语 | 
| 中文简介: | 人造或自然形成的网络通常表现出高度的结构规律性。在本文中,我们引入了结构化网络预测的问题:给定一组n个实体和期望的连通分布,返回在具有指定度分布的网络中将实体连接在一起的一组边缘。当已知网络结构时,预测对于初始化网络,扩充现有网络以及过滤现有网络是有用的。为了捕获成对预测之间的相互依赖关系以学习模型的参数,我们建立在最近的结构化输出模型上。我们的方法中的新颖是使用部分标记的训练样例和网络结构敏感的损失函数。我们提出了模型预测社交网络中等价图和链接的令人鼓舞的结果。 | 
| 课程简介: | Man-made or naturally-formed networks typically exhibit a high degree of structural regularity. In this paper, we introduce the problem of structured network prediction: given a set of n entities and a desired distribution for connectivity, return a likely set of edges connecting the entities together in a network having the specified degree distribution. Prediction is useful for initializing a network, augmenting an existing network, and for filtering existing networks, when the structure of the network is known. In order to capture the inter-dependencies amongst pairwise predictions to learn parameters of our model, we build upon recent structured output models. Novel in our approach is the use of partially labeled training examples, and a network structure sensitive loss function. We present encouraging results of the model predicting equivalence graphs and links in a social network. | 
| 关 键 词: | 结构化网络; 预测社交网络; 等价图 | 
| 课程来源: | 视频讲座网 | 
| 最后编审: | 2019-05-12:lxf | 
| 阅读次数: | 125 | 
