0


数据变化可能是你的朋友

Data variability could be your friend
课程网址: http://videolectures.net/licsb08_barenco_dvf/  
主讲教师: Martino Barenco
开课单位: 伦敦大学学院
开课时间: 2008-04-17
课程语种: 英语
中文简介:
以常微分方程(ODE)形式的确定性建模是系统生物学中的主导范式。这部分源于可用的数据类型。这些模型的输入数据(例如基因表达数据,蛋白质浓度)通常来自全细胞群。因此,建模的是一个平均细胞而不是多个单个细胞的行为。数据内的可变性主要来自测量装置(技术误差)或来自测量之前的难以控制的环境条件(生物可变性),并且可能构成明确结论的障碍。例如,动力学参数不能以绝对精确度获知,并且必须伴随有置信区间,该置信区间通常与附加于生物学数据的相当高的可变性相称。数据的可变性也会给决定性模型选择带来障碍。然而,测量技术越来越多地应用于单个细胞。可以对单个细胞观察进行平均,估计该合成测量的分散,并将这些数据与上面概述的建模范例一起使用。然而,细胞间可变性可能是内在系统噪声的结果。特别是,如果涉及的分子种类以非常低的浓度存在,例如在信号传导网络中,就是这种情况。我们认为,由于这种可变性部分是固有的,因此可以利用它而不是容忍,因此它为管理所研究系统的机制提供了新的见解。这需要范式转换 - 从确定性到随机建模,即使ODE仍然是后者的核心。为了说明这一点,我们使用的示例系统是辐照人体细胞中的DNA双链断裂修复动力学。最近的测定技术允许在单个细胞水平上定量DNA双链断裂(DSB)。在细胞暴露于电离辐射脉冲之后,时间上的重复测量形成细胞的DSB衰变过程的动态图像。至关重要的是,单个细胞测量允许监测群体中DSB计数的分布特征。现有的确定性模型正确地模拟了该系统中的全局特征。特别是,当人们关注人口中的平均DSB计数时,他们可以很好地适应不同的衰变方案。然而,我们表明,当将这些模型转换为随机区域时,在考虑分布特征(例如DSB计数的方差)时提供差的数据拟合。此外,使用部分适合分析操作的简单随机模型,我们表明,用额外的反馈循环丰富现有模型产生的结果更符合观察。使用三个独立的数据集。简要讨论了可能的生物学后果。
课程简介: Deterministic modeling, in the form of ordinary differential equations (ODE), is the dominant paradigm in systems biology. This stems partially from the type of data that is available. Input data (e.g. gene expression data, protein concentrations) for these models is normally derived from whole cell populations. Consequently, what is modeled is the behaviour of one average cell rather than a multitude of individual cells. Variability within the data originates mainly from the measurement apparatus (technical error) or from difficult-to-control environmental conditions that precede the measurement (biological variability) and can constitute an impediment to clear cut conclusions. For example, kinetic parameters cannot be known with absolute precision and have to be accompanied with confidence intervals that are generally commensurate with the rather high variability attached to biological data. Data variability can also put obstacles in the way of decisive model selection. Measurement techniques are, however, increasingly being applied to individual cells. It is possible to average the individual cell observations, estimate the dispersion of this synthetic measurement, and use these data along with the modeling paradigms outlined above. However, inter-cell variability can be the result of intrinsic system noise. In particular, this is the case if molecular species involved exist in very low concentrations, such as in signaling networks. We argue that because this variability is in part intrinsic, it can be harnessed rather than tolerated, so that it provides novel insights into the mechanisms governing the system under study. This requires a paradigm shift –from deterministic to stochastic modeling- even though ODEs are still central in the latter. To illustrate this, the example system we use is DNA Double Strand Break repair dynamics in irradiated human cells. Recent assaying techniques allow the quantification of DNA Double Strand Break (DSB) at the individual cell level. Repeated measurements in time form a dynamic image of the DSB decay process of cells after they have been exposed to a pulse of ionising irradiation. Crucially, individual cell measurements allow the monitoring of distributional features of the DSB count in a population. Existing deterministic models correctly mimic global features in this system. In particular, they can fit very well different decay regimes that are being observed when one focuses on the average DSB count in the population. We show however that these models, when translated into the stochastic realm, provide a poor data fit when one considers distributional features, such as the variance of the DSB count. Furthermore, using simple stochastic models that are partly amenable to analytical manipulation, we show that enriching the existing models with extra feedback loops produces an outcome more in tune with observations. Three independent data sets are used. Possible biological consequences are briefly discussed.
关 键 词: 常微分方程; 动力学参数; DNA双链
课程来源: 视频讲座网
最后编审: 2019-05-12:lxf
阅读次数: 84