0


高斯过程回归引导

Gaussian process regression bootstrapping
课程网址: http://videolectures.net/licsb09_kirk_gprb/  
主讲教师: Paul Kirk
开课单位: 帝国理工学院
开课时间: 2009-04-16
课程语种: 英语
中文简介:
机械和经验建模技术都用于系统生物学。前者构建模型,其结构明确描述了所研究的生物系统的组成部分,而后者则预测了数据中模式的强度。尽管高斯过程回归(GPR)等经验模型并不能直接帮助我们阐明生成给定数据集的过程,但它们仍然可以构成测试和调查假设和机制模型的策略的一部分。在我们的工作中,我们利用GPR的预测能力,以便从实验获得的时间过程数据中生成合理的模拟数据集。这相当于参数化引导程序(其中参数模型是多元法线),其隐含地考虑了数据中的时间依赖性。获得自举样本后,我们将机械模型与原始数据和模拟数据相匹配。这些拟合模型之间的可变性揭示了拟合对数据不确定性的敏感性。我们使用这种方法来研究数据不确定性对信号通路模型和基因网络推断中参数估计的影响。
课程简介: Both mechanistic and empirical modelling techniques are employed in systems biology. The former construct models whose structure explicitly describes components of the biological system under investigation, while the latter make predictions on the strength of patterns in the data. Although empirical models such as Gaussian process regression (GPR) do not directly help us to elucidate the processes that generated a given data set, they can nevertheless form part of a strategy for testing and investigating hypotheses and mechanistic models. , In our work, we exploit the predictive power of GPR in order to generate plausible simulated data sets from experimentally obtained time-course data. This amounts to a parametric bootstrap (in which the parametric model is a multivariate normal) that implicitly takes into account the time-dependence in the data. Having obtained bootstrap samples, we fit mechanistic models to both the original and simulated data. The variability amongst these fitted models reveals the sensitivity of the fit to uncertainty in the data. We use this approach to investigate the effects of data uncertainty upon parameter estimates in a model of a signalling pathway and upon gene network inference.
关 键 词: 高斯过程回归; 参数模型; 机械模型
课程来源: 视频讲座网
最后编审: 2020-01-16:chenxin
阅读次数: 152