0


利用ODES和高斯过程估计多转录因子活性

Estimation of Multiple Transcription Factor Activities using ODEs and Gaussian Processes
课程网址: http://videolectures.net/licsb09_lawrence_emtf/  
主讲教师: Neil D. Lawrence
开课单位: 谢菲尔德大学
开课时间: 2009-04-16
课程语种: 英语
中文简介:
最近,已经使用常微分方程(ODE)从一组靶基因的时间序列表达数据推断单个转录因子(TF)蛋白的浓度。例如,这已被用于揭示p53蛋白的浓度;见Barenco等。 (2006年)。在目前的工作中,我们提出了一个框架,用于从一组由这些TF共同调节的观察到的基因表达中估计多个TF。我们假设连接网络(描述哪些TF调节每个基因)是部分和概率性观察的。例如,这种辅助信息可通过诸如染色质免疫沉淀(ChIP)的技术获得。推论的目的是在时间上连续地估计子网络的结构,转录因子蛋白质的浓度以及推断每个网络链接中的调节类型(即激活,抑制或非调节)。这种多重TF框架使用高斯过程先验来及时地连续模拟未观察到的TF活动,如Lawrence等人所述。 (2007年)针对单一TF案件。使用多个TF的转录调节的ODE模型基于以下线性微分方程,dy_j(t)/ dt = B_j S_j * g(f_1(t),...,f_R(t); w_j) - D_jy_j(t ),其中y_j(t)表示第j个基因在时间t的基因表达,(B_j,S_j,D_j)是方程的动力学参数,每个f_r(t)是TF浓度函数,w_j是它们之间的连通性权重。基因和TFs和g是乙状结肠(例如Michaelis Menten)类型的功能。给定在离散时间点的基因表达的一组观察,参数{B_j,S_j,w_j,D_j}和蛋白质浓度函数{f_r(t)}通过使用采用马尔可夫链Monte的完整贝叶斯方法来估计。卡罗算法。高斯过程先验放置在函数{f_r(t)}上,而连通性权重{w_j}被赋予稀疏先验,以便考虑关于网络连接的边先验信息。整个框架目前应用于Spellman等人的酵母细胞周期基因表达数据中的亚网络。 (1998年)和奥兰多等人。 (2008)通过使用Lee等人提供的连通性ChiP信息。 (2002年)。这是与Magnus Rattray和Neil Lawrence的联合作品。
课程简介: Recently, ordinary differential equations (ODEs) have been used to infer the concentration of a single transcription factor (TF) protein from time series expression data of a set of target genes. For instance, this has been applied to uncover the concentration of the p53 protein; see Barenco et al. (2006). In the present work, we propose a framework to estimate multiple TFs from a set of observed gene expressions that are co-regulated by these TFs. We assume that the connectivity network (that describes which TFs regulate each of the genes) is partially and probabilistically observed. For example, such side information can be available through a technique such as Chromatine Immunoprecipitation (ChIP). The objective of inference is to estimate the structure of the sub-network, the concentration of the transcription factor proteins continuously in time as well as to infer the type of regulation in each network link (i.e. activation, repression or non-regulation). This multiple-TF framework uses Gaussian process priors to model the unobserved TF activities continuously in time, as considered in Lawrence, et al. (2007) for the single-TF case. The ODE model of transcriptional regulation using multiple TFs is based on the following linear differential equation, dy_j(t)/dt = B_j+ S_j*g(f_1(t),...,f_R (t);w_j)− D_jy_j(t), where y_j(t) denotes the gene expression of jth gene at time t, (B_j,S_j,D_j) are the kinetic parameters of the equation, each f_r(t) is a TF concentration function, w_j are the connectivity weights between the gene and the TFs and g is a sigmoid (e.g. Michaelis-Menten) type of function. Given a set of observations of the gene expression at discrete time points, the parameters {B_j,S_j,w_j, D_j} and the protein concentration functions {f_r(t)} are estimated by using a full Bayesian methodology that employs a Markov chain Monte Carlo algorithm. Gaussian process priors are placed on the functions {f_r(t)}, while the connectivity weights {w_j} are given sparse priors so that the side prior information about the network connectivity is taken into account. The whole framework is currently applied to sub-networks in yeast cell-cycle gene expression data in Spellman et al. (1998) and Orlando et al. (2008) by using the connectivity ChiP information provided in Lee et al. (2002). This is a joint work with Magnus Rattray and Neil Lawrence.
关 键 词: 常微分方程; 靶基因; 转录因子
课程来源: 视频讲座网
最后编审: 2020-01-13:chenxin
阅读次数: 57