随机生物模型参数推理的矩封闭与块更新Moment closure and block updating for parameter inference in stochastic biological models |
|
课程网址: | http://videolectures.net/licsb09_milner_mcbu/ |
主讲教师: | Peter Milner |
开课单位: | 纽卡斯尔大学 |
开课时间: | 2009-04-16 |
课程语种: | 英语 |
中文简介: | 本演讲将解决系统生物学新科学中的一个关键问题:使用系统状态的部分,离散和噪声时间过程测量推断复杂随机动力学生化网络模型的速率参数。尽管对精确随机模型的推断是可能的,但对于相对较小的网络来说它是计算密集型的。我们基于潜在随机过程的矩闭合分析,使用近似模型探索随机动力学速率参数的贝叶斯估计。通过假设高斯分布并使用前两个矩的矩闭包估计,我们可以大大提高参数推断的速度。通过将该近似嵌入到MCMC过程中,可以有效地探索参数空间。我们使用桥梁更新方案来估算缺失的物种,其中每个提议的移动是长度为m的桥。我们研究了m的选择如何影响自动调节基因网络中的采样效率。 |
课程简介: | This talk will tackle one of the key problems in the new science of systems biology: inference for the rate parameters underlying complex stochastic kinetic biochemical network models, using partial, discrete and noisy time-course measurements of the system state. Although inference for exact stochastic models is possible, it is computationally intensive for relatively small networks, We explore the Bayesian estimation of stochastic kinetic rate parameters using approximate models, based on moment closure analysis of the underlying stochastic process. By assuming a Gaussian distribution and using moment-closure estimates of the first two moments, we can greatly increase the speed of parameter inference. The parameter space can be efficiently explored by embedding this approximation into an MCMC procedure. We impute the missing species using a bridge updating scheme where each proposed move is a bridge of length m. We investigate how the choice of m affects the efficiency of the sampling in a auto-regulatory gene network. |
关 键 词: | 系统生物学; 随机动力学; 贝叶斯估计 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-14:lxf |
阅读次数: | 89 |