0


稀疏,高维概率的压缩神经表示

Compressive neural representation of sparse, high-dimensional probabilities
课程网址: http://videolectures.net/machine_pitkow_neural/  
主讲教师: Xaq Pitkow
开课单位: 罗彻斯特大学
开课时间: 2013-01-14
课程语种: 英语
中文简介:
本文展示了如何通过指数压缩的神经元来表示稀疏的高维概率分布。该表示是压缩感知对稀疏概率分布的新应用,而不是通常的稀疏信号。压缩测量值对应于概率分布变量的非线性函数的期望值。当通过采样估计这些预期值时,压缩表示的质量仅受采样质量的限制。由于压缩保留了稀疏概率分布空间的几何结构,因此可以在压缩域中执行概率计算。有趣的是,满足压缩感测要求的功能可以实现为简单的感知器。如果我们使用感知器作为神经元前馈计算的简单模型,这些结果表明,即使不考虑任何噪声相关性,相对少量神经元的平均活动也可以隐含地准确地表示高维联合分布。这包括神经元如何编码大脑中概率的新假设。
课程简介: This paper shows how sparse, high-dimensional probability distributions could be represented by neurons with exponential compression. The representation is a novel application of compressive sensing to sparse probability distributions rather than to the usual sparse signals. The compressive measurements correspond to expected values of nonlinear functions of the probabilistically distributed variables. When these expected values are estimated by sampling, the quality of the compressed representation is limited only by the quality of sampling. Since the compression preserves the geometric structure of the space of sparse probability distributions, probabilistic computation can be performed in the compressed domain. Interestingly, functions satisfying the requirements of compressive sensing can be implemented as simple perceptrons. If we use perceptrons as a simple model of feedforward computation by neurons, these results show that the mean activity of a relatively small number of neurons can accurately represent a high-dimensional joint distribution implicitly, even without accounting for any noise correlations. This comprises a novel hypothesis for how neurons could encode probabilities in the brain.
关 键 词: 指数压缩; 高维概率分布; 稀疏概率分布
课程来源: 视频讲座网
最后编审: 2019-05-15:lxf
阅读次数: 82