点态跟踪最优回归函数Pointwise Tracking the Optimal Regression Function |
|
课程网址: | http://videolectures.net/machine_wiener_pointwise_tracking/ |
主讲教师: | Yair Wiener |
开课单位: | 以色列理工学院 |
开课时间: | 2013-01-14 |
课程语种: | 英语 |
中文简介: | 本文考察了在最小二乘回归的背景下“拒绝选项”的可能性。结果表明,使用拒绝理论上可以学习“选择性”回归量,它可以在后见之明中从相同的假设类中逐点跟踪最佳回归量,同时仅拒绝域的有界部分。此外,在某些条件下,被拒绝的体积随着训练集的大小而消失。然后,我们针对线性回归的情况开发这些选择性回归量的有效且精确的实现。对一套真实世界数据集的实证评估证实了理论分析,并表明我们的选择性回归量可以通过减少估计误差来提供实质性的优势。 |
课程简介: | This paper examines the possibility of a "reject option" in the context of least squares regression. It is shown that using rejection it is theoretically possible to learn "selective" regressors that can ϵ-pointwise track the best regressor in hindsight from the same hypothesis class, while rejecting only a bounded portion of the domain. Moreover, the rejected volume vanishes with the training set size, under certain conditions. We then develop efficient and exact implementation of these selective regressors for the case of linear regression. Empirical evaluation over a suite of real-world datasets corroborates the theoretical analysis and indicates that our selective regressors can provide substantial advantage by reducing estimation error. |
关 键 词: | 最小二乘回归; 拒绝理论; 线性回归 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-15:lxf |
阅读次数: | 89 |