0


第3讲:矢量 - 点产品 - 交叉产品 - 3D运动学

Lecture 3: Vectors - Dot Products - Cross Products - 3D Kinematics
课程网址: http://videolectures.net/mit801f99_lewin_lec03/  
主讲教师: Walter H. G. Lewin
开课单位: 麻省理工学院
开课时间: 2008-10-10
课程语种: 英语
中文简介:
** 1。向量方向区分向量与标量**** 2。矢量的分解:**矢量可以投影到三个坐标轴x,y,z上,沿着这些坐标轴是单位矢量(用屋顶表示)。勒温教授就是一个例子。** 3。标量乘积:**两个向量的“点”乘积是标量。标量可以是正数,负数或零,我们将在课程后期使用它来计算工作和能量。 Lewin教授在几个例子中计算了“A点B”。** 4。载体产物:**两个载体的杂交产物(也称为载体产物)产生载体。 Lewin教授提出了两种计算方法。矢量A和B的叉积总是垂直于A和B.使用右手螺旋螺旋规则很容易找到方向。我们将在后期使用交叉积计算扭矩和角动量。总是使用Right Handed坐标系,x hat cross y hat给出z hat。如果你不这样做,你将陷入麻烦,你必须付出高昂的代价。** 5。 3D矢量r,v和a的分解:** Lewin教授写出了位置(r),速度(v)和加速度(a)的方程,显示了它们在x,y,z轴上的投影,并且他引入了速记符号对于时间衍生物。 3D运动可以减少到三个1D运动,这可以大大简化问题。** 6。垂直平面上的抛射物运动:** Lewin教授抛出一个物体,并将其初始速度分解为水平和垂直方向。如果可以忽略空气阻力,则水平速度保持不变。重力加速度仅在垂直方向上,不受水平运动的影响。如果可以忽略空气阻力,这种加速在演讲厅是恒定的(见第12讲)。
课程简介: **1. Vectors - Direction Distinguishes Vectors from Scalars** **2. Decomposition of a Vector:** A vector can be projected onto three coordinate axes x,y,z, along which lie unit vectors (denoted with roofs). Professor Lewin works an example. **3. Scalar Product:** The "dot" product of two vectors is a scalar. A scalar can be positive, negative or zero and we'll use it later in the course to calculate work and energy. Professor Lewin calculates "A dot B" in a couple of examples. **4. Vector Product:** The cross product (also called vector product) of two vectors results in a vector. Professor Lewin presents two methods for calculating it. A cross product of the vectors A and B is always perpendicular to both A and B. The direction is easily found using the right-hand corkscrew rule. We'll use cross products to calculate torques and angular momentum later in the course. Always use Right Handed coordinate systems, x-hat cross y-hat gives z-hat. If you don't, you'll get into trouble for which you will have to pay dearly. **5. Decomposition of 3D Vectors r, v and a:** Professor Lewin writes the equations for position (r), velocity (v) and acceleration (a) showing their projection onto the x,y,z axes, and he introduces a shorthand notation for time derivatives. 3D motion can be reduced to three 1D motions which can greatly simplify matters. **6. Projectile Motion in the Vertical Plane:** Professor Lewin throws an object up, and decomposes its initial velocity into a horizontal and a vertical direction. If air drag can be ignored, the horizontal velocity remains constant. Gravitational acceleration is only in the vertical direction and is not affected by the horizontal motion. This acceleration is constant in the lecture hall if air drag can be ignored (see Lecture 12).
关 键 词: 向量; 3D矢量; 抛射物运动
课程来源: 视频讲座网
最后编审: 2019-05-22:lxf
阅读次数: 51