第4讲:3D运动学 - 自由落体参考系Lecture 4: 3D Kinematics - Free Falling Reference Frames |
|
课程网址: | http://videolectures.net/mit801f99_lewin_lec04/ |
主讲教师: | Walter H. G. Lewin |
开课单位: | 麻省理工学院 |
开课时间: | 2008-10-10 |
课程语种: | 英语 |
中文简介: | ** 1。弹丸轨迹的形状:** Lewin教授回顾了弹丸运动的方程,表明弹道是抛物线。他推导出最高点(最大高度),到达最高点的时间,飞行时间(直到撞击)以及行进的水平距离的公式。对于给定的初始速度(速度是标量,速度是矢量),与垂直方向成45度角的物体将最远。** 2。如何测量初始速度?**物体从类似枪的设备向上射击。通过测量它达到的高度,我们可以找到初始速度。讨论结果中的不确定性,并在随后的演示中予以考虑。** 3。拍摄球最大水平距离:**球与垂直方向成45度角拍摄(角度的不确定性估计约为1度)。 Lewin教授预测球会在演讲厅的长桌上打到哪里。他考虑了球的初始速度的不确定性和角度的1度不确定性。他标记了球应击中的位置。然后他射门,确实按预期落地。** 4。在30和60度拍摄球:**对于给定的初始速度,水平范围对于与垂直方向成30度和60度的角度是相同的(但是球向上移动60度,这些轨迹中的哪一个最长?) 。勒温教授将角度设定为30度,并预测球将击中的位置。他将不确定性考虑在内。球按预期着陆。** 5。在猴子娃娃上射球:**有人射球,直接瞄准挂在树上的猴子。重力加速度大大改变了球的轨迹,并且没有猴子被击中的危险。然而,不幸的是,猴子看到枪的闪光,他放开了。他摔倒在地,并且...球击中了猴子,与球的初始速度无关(假设速度足够高,可以到达树上)。** 6。落猴的参考框架:**猴子和球都以相同的重力加速度下降。从猴子的角度来看(它的参考框架),球直接朝向它(没有弯曲的轨迹)。** 7。 Lewin教授(穿着Safari Outfit)射击枪** |
课程简介: | **1. Shape of the Projectile Trajectory:** Professor Lewin reviews the equations for projectile motion, showing that the trajectory is a parabola. He derives formulas for the highest point (maximum height), the time to reach the highest point, the time of flight (until impact), and the horizontal distance traveled. For given initial speed (speed is a scalar, velocity is a vector), an object thrown at 45 degrees from the vertical will go the farthest. **2. How to Measure the Initial Speed?** An object is shot upwards from a gun-like device. By measuring the height that it reaches, we can find the initial speed. Uncertainties in the results are discussed and are taken into account in the demonstrations that follow. **3. Shoot a Ball for Maximum Horizontal Distance:** The ball is shot at an angle of 45 degrees from the vertical (the uncertainty in the angle is estimated to be about 1 degree). Professor Lewin predicts where the ball will hit the long desk in the lecture hall. He takes into account the uncertainty in the initial speed of the ball and the 1 degree uncertainty in the angle. He marks the locations between which the ball should hit. He then shoots the ball, and indeed it lands as predicted. **4. Shoot a Ball at 30 and 60 Degrees:** For given initial speed, the horizontal range is the same for angles of 30 and 60 degrees from the vertical (but the ball travels higher for 60 degrees -- which of these trajectories takes the longest?). Professor Lewin sets the angle at 30 degrees, and predicts where the ball will hit. He takes the uncertainties into account. The ball lands as predicted. **5. Shoot a Ball at a Monkey Doll:** Someone shoots a ball and aims straight at a monkey who is hanging in a tree. Gravitational acceleration curves the ball's trajectory substantially, and there is no danger that the monkey will get hit. However, tragically the monkey sees the light flash of the gun and he lets go. He falls to the ground, and ... the ball hits the monkey independent of the initial speed of the ball (provided the speed is high enough to reach the tree). **6. Reference Frame of the Falling Monkey:** Both the monkey and the ball are falling with the same gravitational acceleration. From the monkey's point of view (its reference frame) the ball is coming straight at it (no curved trajectory). **7. Professor Lewin (Dressed in Safari Outfit) Fires the Gun** |
关 键 词: | 弹丸轨迹; 重力; 弹丸运动 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-22:lxf |
阅读次数: | 75 |