第五讲:圆周运动 - 离心机移动 - 参考框架 - 感知重力Lecture 5: Circular Motion - Centrifuges Moving - Reference Frames - Perceived Gravity |
|
课程网址: | http://videolectures.net/mit801f99_lewin_lec05/ |
主讲教师: | Walter H. G. Lewin |
开课单位: | 麻省理工学院 |
开课时间: | 2008-10-10 |
课程语种: | 英语 |
中文简介: | ** 1。均匀圆周运动和向心加速度:**粒子以恒定速度以半径r的圆周运动。一次旋转的周期是T(秒);频率为f(转数/秒或Hz),ω是角速度(弧度/秒),ω= 2pi / T,速度v =ω* r。由于向心加速度(= v ^ 2 / r =ω^ 2 * r),速度矢量不断地改变方向。估计真空吸尘器转子的向心加速度约为400米/秒^ 2,这是g的40倍。请注意,向心加速度线性地取决于半径。** 2。必须有一个拉动或推动:**坐在用螺栓固定在快速旋转转盘上的椅子上,你会感觉到你的后背。或者,如果您站在转盘上并且握住安装在桌子上的柱子,您将会感受到拉臂。这种拉力或推力是速度变化(向心加速度)的原因。** 3。如果没有拉动或推动会发生什么?**你的速度不会改变。因此,您沿着直线以恒定速度移动。** 4。行星在太阳周围的运动:**引力提供的向心加速度与距离的平方成反比。** 5。旋转物体周围:**离心机和沙拉旋转器背后的想法。** 6。通过旋转创建人工重力:** Lewin教授给出了几个“感知”重力的例子。空间站可以旋转,使得宇航员感知地球的加速度为10 m / s ^ 2。但是,方向将一直在变化!** 7。离心机的作用:**在标准实验室离心机中旋转装有细颗粒液体的玻璃管。加速度约为20,000 m / s ^ 2。因此,粒子感知的“重力”力比正常大约2000倍,并且它们朝着这个巨大的“引力场”的方向“下降”。 Lewin教授证明了这一点,混合NaCl AgNO_3 => NaNO_3 AgCl;这会产生乳白色的溶液。旋转几分钟后,AgCl在玻璃管的末端沉淀,剩余的溶液变得澄清。** 8。在绳子上摆动一桶水:**为了在垂直平面内旋转铲斗,需要向心加速度。如果您旋转得足够快,水桶会倒置时水会留在水桶中。为了安全起见......带上雨伞去上课! |
课程简介: | **1. Uniform Circular Motion and Centripetal Acceleration:** A particle travels in a circle of radius r with constant speed. The period of one rotation is T (sec); the frequency is f (the number of rotations/sec or Hz), omega is the angular velocity (radians/sec), omega=2pi/T, the speed v= omega*r. The velocity vector is constantly changing direction because of the centripetal acceleration (=v^2/r= omega^2*r). The centripetal acceleration for the rotor of a vacuum cleaner is estimated to be about 400 m/sec^2 which is 40 times larger than g. Note that the centripetal acceleration depends linearly on the radius. **2. There Must be a Pull or a Push:** Sitting on a chair bolted to a fast-rotating turntable, you'll feel a push in your back. Alternatively if you stand on the turntable and you hold onto a post mounted on the table, you will experience a pull in your arms. This pull or push is responsible for the change in velocity (centripetal acceleration). **3. What Happens if there is no Pull or Push?** Your velocity will not change. Thus you move along a straight line with constant speed. **4. Motion of Planets around the Sun:** The gravitational pull provides the centripetal acceleration which is inversely proportional to the distance squared. **5. Swirling Objects Around:** The idea behind a centrifuge and salad spinners. **6. Creating Artificial Gravity via Rotation:** Professor Lewin gives several examples of "perceived" gravity. A space station could rotate such that an astronaut perceives an Earth-like acceleration of 10 m/s^2. However, the direction will be changing all the time! **7. A Centrifuge in Action:** A glass tube filled with a liquid solution with fine particles is spun around in a standard laboratory centrifuge. The acceleration is about 20,000 m/s^2. Thus the particles perceive a "gravitational" force about 2000 times larger than normal, and they "fall" in the direction of this huge "gravitational field". Professor Lewin demonstrates this, mixing NaCl+AgNO_3 => NaNO_3+AgCl; this produces a milky solution. After spinning for a few minutes, the AgCl has precipitated at the end of the glass tube, and the remaining solution has become clear. **8. Swinging a Bucket of Water on a String:** In order to swirl a bucket around in a vertical plane, a centripetal acceleration is required. If you spin fast enough the water will stay in the bucket as the bucket is upside down. To be on the safe side ... bring an umbrella to class! |
关 键 词: | 均匀圆周运动; 向心加速度; 离心机 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-22:lxf |
阅读次数: | 110 |