0


电子,生命和地球氧循环的演变

Electrons, Life and the Evolution of the Oxygen Cycle on Earth
课程网址: http://videolectures.net/mitworld_falkowski_eleoce/  
主讲教师: Paul G. Falkowski
开课单位: 新泽西州立大学
开课时间: 2011-08-29
课程语种: 英语
中文简介:
保罗·福尔科夫斯基(Paul Falkowski)剥夺了地球历史上数十亿年的历史,揭示了我们的水和岩石世界如何经历了大规模的转变,变得富含氧气和生物多样性。他阐明了“O的故事”背后复杂的地球化学和地球物理过程 - 氧气是如何在地球上出现的。虽然科学家们知道光合作用是我们呼吸的空气的原因,但“我们不明白反应是如何起作用的, “法尔科夫斯基说。 “这是生物学中最神秘的电子转移反应之一。”只是分裂水“并没有给你这个星球上的自由氧气。 “然而不知何故,在一个几乎难以想象的时间尺度上,有机体在太阳的帮助下产生了大气中的氧气,并且氧气与其他气体处于平衡状态。福尔科夫斯基对这种炼金术的解释涉及威尔逊循环,富含二氧化硅的岩石厚有机物质被从海洋推到陆地上。 Falkowski说,这个过程可能最早发生在30亿年前,它促成了含氧光合作用的进化。通过“大规模独立的硫同位素分馏”,臭氧的产生和氮固定,地球在大约23亿年前见证了“一次巨大的氧化事件”,引发了从海洋厌氧到有氧环境的转变。突然(从地质上讲),条件已经成熟。用法尔科夫斯基的话说,这是“大翻转”。正确的海洋化学物质促进了原始生物循环的出现。基于海洋的细菌和其他简单的生命形式开发了光合作用机器,用于自己进食,产生氧气并循环利用氮和磷。在过去的2亿年中,氧气产量攀升,导致生命形式的扩散。 Falkowski表示,大型胎盘哺乳动物的兴起可被视为“氧气升高的进化后果”。但生活所依赖的微妙平衡的代谢过程现在正在走向平衡,他说。 “在过去的150年里,人类已经提取了大量埋藏的有机物,并在最近的地质记忆中以前所未有的速度消耗它。结果是地球温度和大气中二氧化碳浓度的变化。“冰川正在发生变化。如果人类能够弄清楚如何扩大生物化学反应,例如水的分解或纤维素产生的燃料,Falkowski看到了对地球的微弱希望。
课程简介: Peeling away billions of years of the Earth’s history, Paul Falkowski reveals how our watery and rocky world underwent a massive transformation to become oxygen-rich and biologically diverse. He elucidates the complex geochemical and geophysical processes underlying the “Story of O” – how oxygen made its appearance on the planet. While scientists know that photosynthesis is responsible for the air we breathe, “We don’t understand how the reaction fundamentally works,” says Falkowski. “It’s one of the most enigmatic electron transfer reactions in biology.” Just splitting water “doesn’t give you free oxygen on the planet. “ Yet somehow, on an almost unimaginable timescale, organisms with the help of the sun have been producing atmospheric oxygen, and that oxygen is in equilibrium with other gases. Falkowski’s explanation for this alchemy involves the Wilson Cycle, where silica-rich rocks thick with organic matter get pushed up from the ocean onto land. This process, which probably first occurred three billion years ago, enabled the evolution of oxygenic photosynthesis, says Falkowski. By means of “mass independent fractionation of sulfur isotopes,” the creation of ozone, and nitrogen fixing, the Earth witnessed “a great oxidation event” around 2.3 billion years ago, triggering a shift from anaerobic to an aerobic environment in the oceans. Suddenly (geologically speaking), the conditions were ripe for life. In Falkowski’s words, this was the “big flip.” The right ocean chemistries encouraged the emergence of primitive biological cycles. Ocean-based bacteria and other simple life forms developed the photosynthetic machinery for feeding themselves, generating oxygen and recycling nitrogen and phosphorus. In the last 200 million years, oxygen production climbed, leading to a proliferation of life forms. The rise of large placental mammals can be seen as the “evolutionary consequence of the rise of oxygen,” says Falkowski. But the delicately balanced metabolic processes on which life depends are now moving out of equilibrium, he says. “In the last 150 years, humans have extracted huge amounts of buried organic matter and consumed it at unprecedented rates in recent geological memory. The result is a change in temperature of the Earth and atmospheric concentrations of CO2.” The glaciers are going. Falkowski sees a faint hope for the planet if humans can figure out how to scale up such biochemical reactions as hydrogen generation from the splitting of water or creation of fuels from cellulose.
关 键 词: 氧气; 生物化学; 电子转移
课程来源: 视频讲座网
最后编审: 2019-05-29:lxf
阅读次数: 59