清洁能源未来的科学技术Science and Technology for a Clean Energy Future |
|
课程网址: | http://videolectures.net/mitworld_horn_sachs_chiang_stephanopoulo... |
主讲教师: | Gang Chen, Yet-Ming Chiang, Gregory Stephanopoulos, Yang Shao-Horn, Emanuel M. Sachs, Jeffrey P. Freidberg, Rafael Reif |
开课单位: | 麻省理工学院 |
开课时间: | 2013-04-19 |
课程语种: | 英语 |
中文简介: | 在过去的30年里,光伏产业一直在稳步增长。但是,对于太阳能电池有助于消除我们对化石燃料的依赖,Emanuel Sachs说,他们需要提供数万亿瓦的功率 - 而且我们“距离我们需要的地方还有一倍。”Sachs的“光伏发电” “挑战”涉及每年建造数千亿个太阳能电池,这可能是通过新的制造工艺实现的。不要打折其他可再生能源,如风电场。新建议通过将浮动涡轮机放置在远处看不见的深水中来避免“不在我的海湾”效应。 虽然太阳能提供无限能源,但如果没有更好的存储系统,我们就无法利用它。蒋明明说,我们需要改进锂离子电池 - 与我们的手机和笔记本电脑相同。当用于大规模存储时,这些电池的当前一代往往会迸发出火焰。蒋的实验室正致力于提高化学性能,因此这些电池可用于住宅太阳能发电,而混合动力汽车则可以低成本提供环保能源。 Gregory Stephanopoulos说,在这个国家收获的生物质总量可能“占美国液体燃料需求的40%”。采取像开关草一样的作物,将其分解成单糖,然后使用微生物将糖转化为有用的分子,如乙醇。如果我们使用纤维素作物代替玉米,并通过光合作用捕获二氧化碳,能量方程就会得到改善。这种转换过程的成本在过去10年中急剧下降,从每加仑1美元到每加仑10美分。但障碍仍然存在,包括改善一系列微生物的代谢工程。 什么不喜欢融合? Jeffrey Freidberg告诉我们反应堆过程是安全的;我们有十亿年的储备燃料;没有释放温室气体或微粒;并且没有剩余的裂变材料需要担心。但是有一个大问题,弗里德伯格说:“它还没有用。”几十年来,这个笑话一直是融合是未来的能源,而且永远都是。但是,弗里德伯格说,我们“几乎解决了所有的科学问题。”一个国际财团已开始在法国建造一个价值40亿美元的试验性核聚变反应堆。 Freidberg总结道,“建造示范电厂需要30年时间 - 而这一次,我们是认真的。” 根据Gang Chen的说法,设计清洁能源系统最关键的因素可能是纳米技术。在原子水平上操纵材料可以改变它们的基本属性。这意味着更好的导电性,更小的电阻和热量输出,可以实现更高效的发电,电池和燃料电池。 “你可以改变能量转换的游戏,”陈说。研究人员正在扩大存储和能量转换系统中不可或缺的超晶格薄膜的制造工艺。在未来,陈将纳米技术视为“推动者”,帮助将新能源系统与交通和住宅建筑相结合。 |
课程简介: | The photovoltaic industry has been steadily growing over the past 30 years. But for solar cells to help eliminate our dependence on fossil fuels, says Emanuel Sachs, they’ll need to provide trillions of watts of power -- and we are “still a thousand fold from where we need to be.” Sachs’ “photovoltaic grand challenge” involves building hundreds of billions of solar cells annually, which may come about through new manufacturing processes. And don’t discount other renewables, like wind farms. New proposals avoid the “Not in my Bay” effect, by placing floating turbines in deep water beyond sight. While the sun offers a source of unlimited energy, we can’t take advantage of it without better storage systems. In particular, says Yet-Ming Chiang, we need to improve lithium ion batteries – the same kind found in our cell phones and laptops. The current generation of these batteries, when used for large-scale storage, tends to burst into flames. Chiang’s lab is working on improving the chemistry so these batteries could be deployed for residential solar power, and in hybrid vehicles, where they would offer environmentally friendly energy at low cost. The total amount of biomass harvested in this country could “comprise up to 40% of the U.S. demand for liquid fuels,” says Gregory Stephanopoulos. Take a crop like switch grass, break it down to simple sugars, then use microorganisms to convert the sugars to useful molecules like ethanol. The energy equation improves if we use cellulosic crops instead of corn, and capture carbon dioxide through photosynthesis. The cost of this conversion process has dropped radically in the last 10 years, from one dollar a gallon to 10 cents a gallon. But hurdles remain, including improved metabolic engineering of an array of microbes. What’s not to like about fusion? Jeffrey Freidberg tells us that the reactor process is safe; we have one billion year’s worth of fuel in reserve; there’s no release of greenhouse gases or particulates; and there’s no leftover fissile material to worry about. But there’s one big problem, Freidberg says: “It doesn’t work yet.” For decades, the joke has been that fusion is the energy source of the future and always will be. But, Freidberg says, we’ve “nearly solved all the scientific problems.” An international consortium has begun building an experimental $4 billion fusion reactor in France. Freidberg concludes, “It will take 30 years to build a demonstration power plant-- and this time, we’re serious.” The most critical ingredient in designing cleaner energy systems may well be nanotechnology, according to Gang Chen. Manipulating materials at the atomic level can alter their fundamental properties. This means better conductivity, with less resistance and heat output, allowing for more efficient power generation, batteries and fuel cells. “You can change the game of energy conversion,” says Chen. Researchers are scaling up manufacturing processes for super-lattice thin films integral to storage and energy conversion systems. In the future, Chen sees nanotechnology as “the enabler,” helping combine new energy systems for transportation and residential buildings. |
关 键 词: | 不在我的海湾效应; 代谢工程; 纳米技术 |
课程来源: | 视频讲座网 |
最后编审: | 2019-06-03:cjy |
阅读次数: | 121 |