0


核技术的多样化应用

Diverse Applications of Nuclear Technology
课程网址: http://videolectures.net/mitworld_hutchkinson_williams_coderre_ja...  
主讲教师: Alan Jasanoff, Ian Hutchinson, David Kaiser, Jeffrey Coderre, Dwight Williams
开课单位: 麻省理工学院
开课时间: 2013-01-14
课程语种: 英语
中文简介:
正如主持人大卫凯撒所说的那样,本次会议大大有助于展示“原子的幸福面孔”,用核技术用途的多维图景取代蘑菇云图像. 作为等离子体物理学家,伊恩哈钦森致力于控制聚变 - 核技术的一个非常热门的领域,而不是一个。哈金森说,通过将氢的同位素融合在一起,你可以获得恒星的能量来源。这保证了无限的清洁能源储备。这些反应只能在超高温下进行,并且“将这些反应降至人体尺度”,所产生的气体必须被称为托卡马克的机器中的强力磁铁所包含。麻省理工学院和其他实验室已经产生聚变能,现在正在建立一个大型国际项目来建立一个大型聚变反应堆。哈钦森说,最大的挑战是理解“等离子体内的巨大搅拌和漩涡”,导致气体泄漏和融合过程中断。 我们现在正进入一个“焦虑似乎正在消退的时代,我们能够在安全领域讨论核技术的好处,”德怀特威廉姆斯说。他描述了对通常用于防止人们“在飞机上或通过端口传输坏东西”的检测设备的一些重大升级。威廉姆斯解释了有源系统设备,它可以在原本不具有放射性的物质中产生放射性特征,因此信号项目的“元素含量”。使用热中子活化分析的机器可以穿透各种屏蔽,产生伽马射线和袋子内容的3D图像。威廉姆斯说,由于爆炸物具有果酱,杏仁糖和巧克力的一些特征,先进的核技术将帮助检查员区分良性和危险。 核技术的医学应用部署不同类型的辐射以杀死肿瘤细胞并保留健康组织。但是,Jeffrey Coderre说,屏蔽健康细胞以防止辐射的副作用是一个棘手的主张。 Coderre研究了辐射损伤的性质,并确定它是干细胞损伤的一个功能(而不是对血管的损害)。他描述了放射性同位素如何用于医疗辐射,几乎所有放射性同位素来自加拿大反应堆,可以多种方式使用:观察骨骼快速生长的区域,或骨骼中的肿瘤部位;对医院使用的注射器和帷帘进行消毒;并且在称为伽玛刀的辐射头盔中,将聚焦辐射聚焦到困难的脑肿瘤中。 Alan Jasanoff提供医学成像技术的一站式参观,区分使用高能辐射的扫描(如计算机断层扫描和正电子发射断层扫描);基于无线电波的低波长辐射,例如核磁共振成像。例如,PET扫描检测已在含糖饮料中消耗的分子示踪剂,以找到细胞快速分裂的区域。这种成熟的成像方法的新应用包括定位引起阿尔茨海默病的大脑中的斑块。与CT或PET扫描不同,MRI对组织的破坏性影响最小,并且允许血管的3D绘图,以及最近对大脑中微观纤维的追踪。 Jasanoff的实验室使用钙敏感造影剂来检测大脑中的事件。
课程简介: This session goes a long way toward demonstrating the “happy face of the atom,” as moderator David Kaiser puts it, replacing the mushroom cloud image with a multidimensional picture of the uses of nuclear technology. As a plasma physicist, Ian Hutchinson works on controlled fusion -- a very hot area of nuclear technology in more ways than one. By fusing together isotopes of hydrogen, you can achieve the energy source of stars, says Hutchinson. This promises infinite reserves of clean energy. These reactions are only possible at super high temperatures, and “to bring these down to a human scale,” the gases created must be contained by powerful magnets in machines called tokamaks. MIT and other labs have produced fusion energy and now a major international project to create a large fusion reactor is under way. The big challenge, says Hutchinson, is understanding the “great stirrings and eddies inside the plasma” that cause gas leaks and disruption to the fusion process. We are now entering a time when “angst seems to be subsiding and we are able to discuss the benefits of nuclear technology in the security arena,” says Dwight Williams. He describes some major upgrades to the detection devices commonly used to prevent people from getting “bad stuff on an airplane or through a port.” Williams explains active system devices, which can induce a radioactive signature in something that was not originally radioactive, and thus signal an item’s “elemental content.” A machine using thermal neutron activation analysis can penetrate all kinds of shielding, to produce gamma rays and a 3D image of the contents of a bag. Since explosives share some of the features of jam, marzipan and chocolate, says Williams, advanced nuclear techniques will help inspectors distinguish between the benign and dangerous. Medical applications of nuclear technology deploy different types of radiation to kill tumor cells and spare healthy tissue. But, says Jeffrey Coderre, shielding healthy cells to prevent radiation’s side effects turns out to be a tricky proposition. Coderre investigated the nature of radiation damage and determined it was a function of damage to stem cells (rather than damage to blood vessels). He describes how the radioisotopes used in medical radiation, virtually all of which come from Canadian reactors, can be used in a variety of ways: to view areas of rapid bone growth, or tumor sites in bone; to sterilize syringes and drapes used in hospitals; and in a radiation helmet called the gamma knife to get focused radiation into difficult brain tumors. Alan Jasanoff provides a one-stop tour of medical imaging techniques, differentiating between those scans that use high energy radiation (such as computed tomography and positron emission tomography); and low wavelength radiation, based on radio waves, such as nuclear magnetic resonance imaging. PET scans detect molecular tracers that have been consumed in a sugary drink to find areas where cells are rapidly dividing, for example. New applications for this well established imaging method include locating plaques in the brain that cause Alzheimer’s disease. MRI, unlike CT or PET scans, has minimal destructive impact on tissues, and allows 3D mapping of blood vessels, and more recently, the tracing of microscopic fibers in the brain. Jasanoff’s lab uses calcium-sensitive contrast agents to detect events in the brain.
关 键 词: 核技术用途的多维图景; 大型聚变反应堆; 元素含量
课程来源: 视频讲座网
最后编审: 2019-06-03:cjy
阅读次数: 55