第二定律和宇宙学The Second Law and Cosmology |
|
课程网址: | http://videolectures.net/mitworld_tegmark_slc/ |
主讲教师: | Max Tegmark |
开课单位: | 麻省理工学院 |
开课时间: | 2013-07-24 |
课程语种: | 英语 |
中文简介: | 尽管年代久远,热力学第二定律“仍然存在并且仍然存在,”马克斯泰格马克说,他正在激发对“真正的,非常大的难题”的研究。在泰格马克的案例中,“大”涵盖了宇宙,并研究了熵的熵。宇宙提供了一条理解“我们如何开始”的途径.Tgmark用矛盾的问题构建他的谈话:为什么熵如此之低,为什么熵如此之高?第一个问题是“理解时间之箭的关键”,并涉及熵的微观定义。在大爆炸之后的137亿年,可观测宇宙中的熵在“粗略地说是1089比特的棒球场,一个谷歌。”这远低于我们的宇宙可以包含多少熵的理论极限。此外,Tegmark想知道,为什么我们的太阳系最终远离热平衡,因为当宇宙更年轻时,各处的温度几乎相同?事实证明,在宇宙学中,与经典物理学不同,原子始于均匀密度最后,在重力的支持下,“块状”,气体越来越稠密,形成恒星。 Tegmark展示了这个过程的超级计算机模拟,它描绘了宇宙与星系和太阳系的演变,就像我们自己的星系一样。他说,宇宙中不同的温度不是由于魔法,只是爱因斯坦的引力理论和基本的气体物理学。但是,泰格马克思考,为什么宇宙在开始时是统一的?一个“疯狂的回答”涉及通货膨胀。一个比原子小得多的微小空间区域,非常均匀且非常密集,开始呈指数级扩展,直到它弥合我们已知宇宙中的所有空间。它变得更奇怪了。 Tegmark引用通货膨胀不仅可以解释宇宙的低熵,还可以解释其高熵。同样的1089位也可以被视为“如此大的数字,它表明......我们处于某种多元宇宙中,或者比我们可以观察到的更大的现实。”构成这10个的初始条件是第89位“只是告诉我们我们居住在太空中的哪个位置,我们在太空中的地址。”我们应该把大爆炸称为“不是开始,而是在这个空间的通胀结束。 ......如果我们缩小宇宙,我们应该期望看到更多的熵。“如果你没有直观地得到这个,那没关系,Tegmark向我们保证,但是”如果我们断然拒绝科学中的想法只是因为他们感到疯狂,我们也许会拒绝任何正确的理论。“ |
课程简介: | In spite of its old age, the Second Law of Thermodynamics “is alive and kicking,” says Max Tegmark, stimulating research on “really, really big puzzles.” In Tegmark’s case, “big” encompasses the cosmos, and investigating the entropy of the universe offers one path into understanding “how we started out.” Tegmark frames his talk with paradoxical questions: Why is entropy so low, and why is entropy so high? The first question is “crucial to understanding the arrow of time,” and involves the microscopic definition of entropy. 13.7 billion years after the Big Bang, entropy in the observable universe is in “the ballpark of 1089 bits -- crudely speaking, a google.” This is much lower than the theoretical limit to how much entropy our cosmos could contain. Also, Tegmark wonders, why has our solar system ended up so far from thermal equilibrium, since when the universe was younger, the temperature was almost the same everywhere? It turns out that in cosmology, unlike classical physics, atoms start out at uniform density and end up, abetted by gravity, “clumpy,” with gas getting denser and forming stars. Tegmark shows a supercomputer simulation of this process, which depicts the evolution of a universe with galaxies and solar systems like our own. Different temperatures in the universe aren’t due to magic, he says, just Einstein’s theory of gravity and basic gas physics. But, Tegmark ponders, why was the universe uniform in the beginning? One “crazy sounding answer” involves inflation. A tiny region of space much smaller than an atom, which is very uniform and very dense, begins to expand exponentially, until it makes up all space in our known universe. It gets weirder. Tegmark invokes inflation to explain not only the low entropy of the cosmos, but its high entropy as well. That same 1089 bits can also be viewed as “such a big number that it suggests…that we’re in some kind of multiverse, or some much larger reality than what we can observe.” The initial conditions that make up these 10 to the 89th bits “just tell us where in space we live, our address in space.” We should call the Big Bang “not the beginning but the end of inflation in this part of space. … If we zoom out in the universe, we should expect to see much more entropy.” If you don’t get this intuitively, that’s OK, Tegmark reassures us, but “if we categorically reject ideas in science just because they feel crazy, we will probably reject whatever the correct theory is, too.” |
关 键 词: | 第二定律; 宇宙学; 宇宙大爆炸; 多元宇宙 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:cxin |
阅读次数: | 53 |