0


在存在对称性的情况下改进频繁的子图挖掘

Improving frequent subgraph mining in the presence of symmetry
课程网址: http://videolectures.net/mlg07_desrosiers_ifsm/  
主讲教师: Christian Desrosiers
开课单位: 蒙特利尔理工学院
开课时间: 2007-09-05
课程语种: 英语
中文简介:
频繁子图挖掘问题的难点源于枚举子图的任务并计算他们在数据集中的支持。如果数据集图表中包含其他信息标签的形式,这些问题可以得到很好的解决容易。 但是,如果数据集图形未标记或者只有几个标签,那么复杂性这些问题大大减少了数量和尺寸可以管理的数据集图表。 从而研究人员研究频繁的子图采矿问题很少受到关注数据集和当前算法往往做得不好在他们。 然而,有许多应用程序处理这类数据,主要是在这些领域计算数据结构为2D的视觉或3D网格[8],或通信/运输信息主要是拓扑的网络。
课程简介: The difficulty of the frequent subgraph mining problem arises from the tasks of enumerating the subgraphs and calculating their support in the dataset. If the dataset graphs have additional information in the form of labels, these problems can be solved quite easily. However, if the dataset graphs are unlabeled or only have a few labels, then the complexity of these problems greatly reduces the number and sizes of the dataset graphs that can be managed. Thus far, researchers working on the frequent subgraph mining problem have given little attention to such datasets, and current algorithms tend to do poorly on them. Yet, there are many applications which deal with this type of data, mainly in the fields of compute vision where the data is structured as 2D or 3D meshes [8], or communication/transportation networks where the information is mostly topological.
关 键 词: 频繁子图; 数据集图表; 计算数据结构
课程来源: 视频讲座网
最后编审: 2019-06-30:cjy
阅读次数: 41