Min,Max和PTIME反单调重叠图测量Min, Max and PTIME Anti-Monotonic Overlap Graph Measures |
|
课程网址: | http://videolectures.net/mlg08_van_dyck_mmp/ |
主讲教师: | Dries Van Dyck |
开课单位: | 林堡跨国大学 |
开课时间: | 2008-08-25 |
课程语种: | 英语 |
中文简介: | 本文的主要贡献是:(1)我们将Vanetik,Gudes和Shimony的反单调性结果扩展到带有边缘的标记或未标记,有向或无向图上的所有24种iso-,homo-或同胚的组合。 - 或顶点重叠。 (2)我们表明 (在合理的假设下)Vanetik,Gudes和Shimony(2006)的最大独立集合度量(MIS)是基于重叠图的频率测量类中最小的反单调度量。 我们还介绍了新的最小集团划分措施(MCP) 这是最大的一个。 (3)通常,在重叠图的大小中,MIS和MCP测量都是NP难的。 我们介绍了多项式时间可计算的Lovasz度量,它夹在前两者之间,并表明它是反单调的。 |
课程简介: | The main contributions of this paper are: (1) We extend the anti-monotonicity results of Vanetik, Gudes and Shimony to all 24 combinations of iso-, homo-, or homeomorphism, on labeled or unlabeled, directed or undirected graphs, with edge- or vertex-overlap. (2) We show that (under reasonable assumptions) the maximum independent set measure (MIS) of Vanetik, Gudes and Shimony (2006) is the smallest anti-monotonic measure in the class of overlap-graph based frequency measures. We also introduce the new minimum clique partition measure (MCP) which represents the largest possible one. (3) In general, both theMIS and theMCP measure are NP-hard in the size of the overlap graph. We introduce the polynomial time computable Lovasz measure, which is is sandwiched between the former two, and show that is anti-monotonic. |
关 键 词: | 反单调性结果; 顶点重叠; 最小集团划分措施 |
课程来源: | 视频讲座网 |
最后编审: | 2019-07-02:cjy |
阅读次数: | 66 |