新内核网络实体分类A New Kernel for Classification of Networked Entitiess |
|
课程网址: | http://videolectures.net/mlg08_zhang_ank/ |
主讲教师: | Dell Zhang |
开课单位: | 伦敦大学学院 |
开课时间: | 2008-08-25 |
课程语种: | 英语 |
中文简介: | 用于数据分类的统计机器学习技术通常假设所有实体都是i.i.d. (独立且相同的分布)。然而,现实世界实体通常通过显式或隐式关系彼此互连以形成复杂网络。尽管近年来出现了一些基于图的分类方法,但它们并不真正适用于复杂网络,因为它们不考虑网络的程度分布。在本文中,我们提出了一种新技术,Modularity Kernel,它可以有效地利用网络实体的潜在社区结构进行分类。关于超文本数据集的大量实验表明,与现有技术方法相比,我们提出的方法可以获得出色的分类性能。 |
课程简介: | Statistical machine learning techniques for data classification usually assume that all entities are i.i.d. (independent and identically distributed). However, real-world entities often interconnect with each other through explicit or implicit relationships to form a complex network. Although some graph-based classification methods have emerged in recent years, they are not really suitable for complex networks as they do not take the degree distribution of network into consideration. In this paper, we propose a new technique, Modularity Kernel, that can effectively exploit the latent community structure of networked entities for their classification. A number of experiments on hypertext datasets show that our proposed approach leads to excellent classification performance in comparison with the state-of-the-art methods. |
关 键 词: | 数据分类; 网络实体; 分类性能 |
课程来源: | 视频讲座网 |
最后编审: | 2020-10-22:chenxin |
阅读次数: | 67 |